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SciML and inverse problems

Inverse problems: Recover x ∈ X given y ≈ A(x) and A : X → Y

Challenges: Ill-posed, large-scale

Scientific machine learning (SciML)
= Scientific computing + Machine learning

• Domain adapted networks: Incorporate handcrafted models/criteria/constraints.

• Inverse problems: DNN ≈ A−1, account for explicit A : X → Y and ∂A∗ : Y → L(Y ,X )

• Unrolling: Neural networks for approximating operators defined by iterative schemes.
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Posterior mean: 2D tomography

• y = A(x) + e

• y = sample from (y | x = x∗)

x∗ unknown

• Reco.: Rθ̂(y) ≈ E[x | y = y ]

θ̂ ∈ argmin
θ

E(x,y)

[∥∥Rθ(y)− x

∥∥2
2

]
• Rθ = domain adapted DNN

• Training data: Samples of (x,y)
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Posterior sampling: 2D tomography

Generative adversarial networks (GANs): Mini-max
game between two DNNs (generator/discriminator)

• Conditional GAN: Conditional variant of a
GAN, can be used to sample from posterior
distribution in an inverse problem.

• WGAN: Minimizes Wasserstein loss

Training: θ̂ solves conditional WGAN problem:

argmin
θ

{
max
φ

{
E(x,y)

[
Dφ(x,y)− Ez

[
Dφ
(
Gθ(z,y),y

)]]}}

• Gθ = DNN generator

• Dφ = DNN discriminator

• Training data: Samples of (x,y)

• Trained generator: Gθ̂(z, y) ≈ P(x | y = y)
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More details in tomorrow’s Digital Futures ‘Fly High & Dive Deep’ seminar

• Title: Scientific Machine Learning: An Overview with Applications to Inverse
Problems

• Date and time: 15:00 – 16:00 CEST (UTC +2)

• Zoom: https://kth-se.zoom.us/j/69560887455
Meeting ID: 695 6088 7455
Password: 755440

https://kth-se.zoom.us/j/69560887455
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