
Solving Inverse Problems with Scientific Machine
Learning (SciML)

SeRC 12:th Annual Meeting

Ozan Öktem

24 May, 2021

Department of Mathematics
KTH - Kungliga Tekniska Högskolan



SciML and inverse problems

Inverse problems: Recover x ∈ X given y ≈ A(x) and A : X → Y

Challenges: Ill-posed, large-scale

Scientific machine learning (SciML)
= Scientific computing + Machine learning

• Domain adapted networks: Incorporate handcrafted models/criteria/constraints.

• Inverse problems: DNN ≈ A−1, account for explicit A : X → Y and ∂A∗ : Y → L(Y ,X )

• Unrolling: Neural networks for approximating operators defined by iterative schemes.

Update Update Update

Update Update

A∗ A∗ A∗

A A



SciML and inverse problems

Inverse problems: Recover x ∈ X given y ≈ A(x) and A : X → Y

Scientific machine learning (SciML) = Scientific computing + Machine learning
• Domain adapted networks: Incorporate handcrafted models/criteria/constraints.

• Inverse problems: DNN ≈ A−1, account for explicit A : X → Y and ∂A∗ : Y → L(Y ,X )

• Unrolling: Neural networks for approximating operators defined by iterative schemes.

Update Update Update

Update Update

A∗ A∗ A∗

A A



SciML and inverse problems

Inverse problems: Recover x ∈ X given y ≈ A(x) and A : X → Y

Scientific machine learning (SciML) = Scientific computing + Machine learning
• Domain adapted networks: Incorporate handcrafted models/criteria/constraints.

• Inverse problems: DNN ≈ A−1, account for explicit A : X → Y and ∂A∗ : Y → L(Y ,X )

• Unrolling: Neural networks for approximating operators defined by iterative schemes.

Update Update Update

Update Update

A∗ A∗ A∗

A A



SciML and inverse problems

Inverse problems: Recover x ∈ X given y ≈ A(x) and A : X → Y

Scientific machine learning (SciML) = Scientific computing + Machine learning
• Domain adapted networks: Incorporate handcrafted models/criteria/constraints.

• Inverse problems: DNN ≈ A−1, account for explicit A : X → Y and ∂A∗ : Y → L(Y ,X )

• Unrolling: Neural networks for approximating operators defined by iterative schemes.

Update Update Update

Update Update

A∗ A∗ A∗

A A



SciML and inverse problems

Inverse problems: Recover x ∈ X given y ≈ A(x) and A : X → Y

Scientific machine learning (SciML) = Scientific computing + Machine learning
• Domain adapted networks: Incorporate handcrafted models/criteria/constraints.

• Inverse problems: DNN ≈ A−1, account for explicit A : X → Y and ∂A∗ : Y → L(Y ,X )

• Unrolling: Neural networks for approximating operators defined by iterative schemes.

DNN DNN DNN

DNN DNN

A∗ A∗ A∗

A A



Posterior mean: 2D tomography

• y = A(x) + e

• y = sample from (y | x = x∗)

x∗ unknown

• Reco.: Rθ̂(y) ≈ E[x | y = y ]

θ̂ ∈ argmin
θ

E(x,y)

[∥∥Rθ(y)− x

∥∥2
2

]
• Rθ = domain adapted DNN

• Training data: Samples of (x,y)



Posterior mean: 2D tomography

• y = A(x) + e

• y = sample from (y | x = x∗)

x∗ unknown

• Reco.: Rθ̂(y) ≈ E[x | y = y ]

θ̂ ∈ argmin
θ

E(x,y)

[∥∥Rθ(y)− x

∥∥2
2

]
• Rθ = domain adapted DNN

• Training data: Samples of (x,y)



Posterior mean: 2D tomography

• y = A(x) + e

• y = sample from (y | x = x∗)

x∗ unknown

• Reco.: Rθ̂(y) ≈ E[x | y = y ]

θ̂ ∈ argmin
θ

E(x,y)

[∥∥Rθ(y)− x

∥∥2
2

]
• Rθ = domain adapted DNN

• Training data: Samples of (x,y)



Posterior mean: 2D tomography

• y = A(x) + e

• y = sample from (y | x = x∗)

x∗ unknown

• Reco.: Rθ̂(y) ≈ E[x | y = y ]

θ̂ ∈ argmin
θ

E(x,y)

[∥∥Rθ(y)− x

∥∥2
2

]
• Rθ = domain adapted DNN

• Training data: Samples of (x,y)



Posterior mean: 2D tomography

• y = A(x) + e

• y = sample from (y | x = x∗)

x∗ unknown

• Reco.: Rθ̂(y) ≈ E[x | y = y ]

θ̂ ∈ argmin
θ

E(x,y)

[∥∥Rθ(y)− x

∥∥2
2

]
• Rθ = domain adapted DNN

• Training data: Samples of (x,y)



Posterior mean: 2D tomography

• y = A(x) + e

• y = sample from (y | x = x∗)

x∗ unknown

• Reco.: Rθ̂(y) ≈ E[x | y = y ]

θ̂ ∈ argmin
θ

E(x,y)

[∥∥Rθ(y)− x

∥∥2
2

]
• Rθ = domain adapted DNN

• Training data: Samples of (x,y)



Posterior sampling: 2D tomography

Generative adversarial networks (GANs): Mini-max
game between two DNNs (generator/discriminator)

• Conditional GAN: Conditional variant of a
GAN, can be used to sample from posterior
distribution in an inverse problem.

• WGAN: Minimizes Wasserstein loss

Training: θ̂ solves conditional WGAN problem:

argmin
θ

{
max
φ

{
E(x,y)

[
Dφ(x,y)− Ez

[
Dφ
(
Gθ(z,y),y

)]]}}

• Gθ = DNN generator

• Dφ = DNN discriminator

• Training data: Samples of (x,y)

• Trained generator: Gθ̂(z, y) ≈ P(x | y = y)



Posterior sampling: 2D tomography

Generative adversarial networks (GANs): Mini-max
game between two DNNs (generator/discriminator)

• Conditional GAN: Conditional variant of a
GAN, can be used to sample from posterior
distribution in an inverse problem.

• WGAN: Minimizes Wasserstein loss

Training: θ̂ solves conditional WGAN problem:

argmin
θ

{
max
φ

{
E(x,y)

[
Dφ(x,y)− Ez

[
Dφ
(
Gθ(z,y),y

)]]}}

• Gθ = DNN generator

• Dφ = DNN discriminator

• Training data: Samples of (x,y)

• Trained generator: Gθ̂(z, y) ≈ P(x | y = y)



Posterior sampling: 2D tomography

Generative adversarial networks (GANs): Mini-max
game between two DNNs (generator/discriminator)

• Conditional GAN: Conditional variant of a
GAN, can be used to sample from posterior
distribution in an inverse problem.

• WGAN: Minimizes Wasserstein loss

Training: θ̂ solves conditional WGAN problem:

argmin
θ

{
max
φ

{
E(x,y)

[
Dφ(x,y)− Ez

[
Dφ
(
Gθ(z,y),y

)]]}}

• Gθ = DNN generator

• Dφ = DNN discriminator

• Training data: Samples of (x,y)

• Trained generator: Gθ̂(z, y) ≈ P(x | y = y)



Posterior sampling: 2D tomography

Generative adversarial networks (GANs): Mini-max
game between two DNNs (generator/discriminator)

• Conditional GAN: Conditional variant of a
GAN, can be used to sample from posterior
distribution in an inverse problem.

• WGAN: Minimizes Wasserstein loss

Training: θ̂ solves conditional WGAN problem:

argmin
θ

{
max
φ

{
E(x,y)

[
Dφ(x,y)− Ez

[
Dφ
(
Gθ(z,y),y

)]]}}

• Gθ = DNN generator

• Dφ = DNN discriminator

• Training data: Samples of (x,y)

• Trained generator: Gθ̂(z, y) ≈ P(x | y = y)



Posterior sampling: 2D tomography

Generative adversarial networks (GANs): Mini-max
game between two DNNs (generator/discriminator)

• Conditional GAN: Conditional variant of a
GAN, can be used to sample from posterior
distribution in an inverse problem.

• WGAN: Minimizes Wasserstein loss

Training: θ̂ solves conditional WGAN problem:

argmin
θ

{
max
φ

{
E(x,y)

[
Dφ(x,y)− Ez

[
Dφ
(
Gθ(z,y),y

)]]}}

• Gθ = DNN generator

• Dφ = DNN discriminator

• Training data: Samples of (x,y)

• Trained generator: Gθ̂(z, y) ≈ P(x | y = y)



Posterior sampling: 2D tomography

Generative adversarial networks (GANs): Mini-max
game between two DNNs (generator/discriminator)

• Conditional GAN: Conditional variant of a
GAN, can be used to sample from posterior
distribution in an inverse problem.

• WGAN: Minimizes Wasserstein loss

Training: θ̂ solves conditional WGAN problem:

argmin
θ

{
max
φ

{
E(x,y)

[
Dφ(x,y)− Ez

[
Dφ
(
Gθ(z,y),y

)]]}}

• Gθ = DNN generator

• Dφ = DNN discriminator

• Training data: Samples of (x,y)

• Trained generator: Gθ̂(z, y) ≈ P(x | y = y)



More details in tomorrow’s Digital Futures ‘Fly High & Dive Deep’ seminar

• Title: Scientific Machine Learning: An Overview with Applications to Inverse
Problems

• Date and time: 15:00 – 16:00 CEST (UTC +2)

• Zoom: https://kth-se.zoom.us/j/69560887455
Meeting ID: 695 6088 7455
Password: 755440

https://kth-se.zoom.us/j/69560887455

	anm2: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


