Program Third Annual Meeting

Tuesday 24/4		Wednesday 2	25/4
12.00	Lunch	07.30	Breakfast
13.00-14.00	Welcome and presentation of SeRC faculty Dan Henningson (SeRC Director, KTH) Olof Runborg (SeRC faculty)	08.30-09.00	Infrastructure Bengt Persson (NSC Director, LiU) Erwin Laure (PDC Director, KTH)
14.00-14.45	The Challenges of Petascale Computing William T.C. Kramer (NCSA, University of Illinois)	09.00-09.45	e-Science at Science for Life Laboratory Mathias Uhlén (SciLifeLab)
14.45-15.15	Coffee	09.45-10.15	Coffee
15.15-15.45	UNINETT Sigma and SNIC Jacko Koster (New SNIC director)	10.15-10.45	eCPC, e-Science for Cancer Prevention and Cure Ola Spjuth (eCPC project leader, KI)
15.45-16.30	Visualization in Data Intensive Domains Timo Ropinski (SeRC Visualization Community, I	10.45-11.30	Sampsa Hautaniemi (Complex Diseases Community, Un e-Science and Bioinformatics David Jones (University College London)
16.30-17.15	CFD in Hollywood Marcus Nordenstam (Exotic Matter)	11.30-12.00	Closure
17.15-19.00	Cross-community meetings and poster session	12.00	Lunch
19.30	Dinner		

Annual Meeting Report

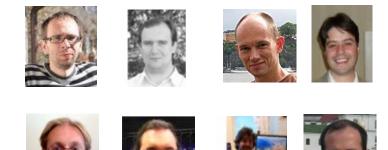
Skogshem & Wijk, Lidingö, April 24-25, 2012

Dan Henningson

Director SeRC

SeRC Vision

Through e-Science enable world leading research within strategically important areas


We realize our vision by

- recruiting faculty within the strategic research areas
- forming e-Science communities where collaboration between applications, core e-Science and computer centers are promoted
- forming a strong European e-infrastructure node through close collaboration between PDC and NSC
- creating an interface with industry and society
- creating a strong e-Science curriculum at the partner universities

20 SeRC faculty

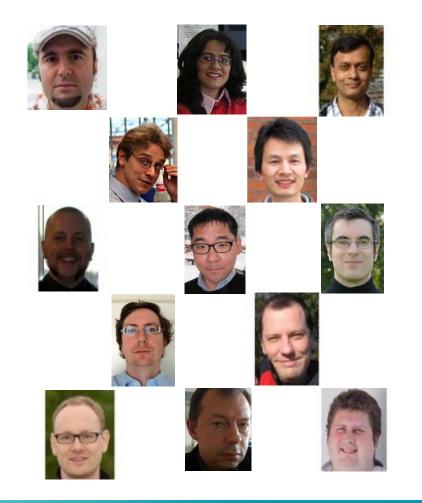
- Lars Bergqvist, ELEC, KTH
- Zilvinas Rinkevicius, ELEC, KTH
- Berk Hess, MOL, <u>KTH</u>
- Philipp Schlatter, FLOW, KTH
- Olof Runborg, NA, <u>KTH</u>
- *Erwin Laure* DPT, <u>KTH</u> 2012
- Mathieu Linares, Leonid Pourovskii, ELEC, LiU
- Björn Wallner, BIO, LiU
- Tino Ebbers, Timo Ropinski, VIZ, LiU
- Christoph Kessler, Patrick Lambrix, DM/DPT, LiU
- Lars Arvestad, BIO, SU
- Rodrigo Caballero, Gunilla Svensson, CLIM, SU
- Keith Humphreys, COM, <u>KI</u>
- Jeanette Hellgren-Kotaleski, COM, KTH
- Olivia Eriksson, SeRC, <u>KTH</u>, Ola Spjut, eCPC/DM, <u>KI</u>

e-Science Communities

- Applied communities:
 - Bioinformatics
 - Climate Modeling
 - Complex Diseases
 - Electronic Structure
 - FLOW
 - Molecular Simulation
- Core communities:
 - Data Management
 - Distributed and Parallel Techniques
 - Numerical Analysis
 - Visualization

e-infrastructure goal

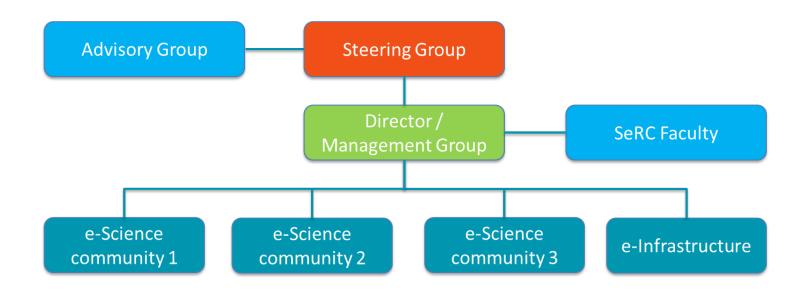
- Prioritize collaboration between NSC and PDC in order to
 optimize user support and establish the capacity to host large
 HPC systems at the European Tier 1 level.
- Integrate application experts at centers in e-Science communities to provide advanced user support


PDC/NSC host about 70-80% of Swedish HPC-resources, including Cray Lindgren and coming Triolit cluster

SNIC provides 50% funding, KTH and LiU 30% (40 MSEK)

13 SeRC Application Experts

- Rossen Apostolov <u>rossen@kth.se</u>
- Lilit Axner <u>lilit@kth.se</u>
- Chandan Basu cbasu@nsc.liu.se
- Mikael Djurfeldt <u>djurfeldt@gmail.com</u>
- Jing Gong jing.gong@gmail.com
- Joel Hedlund <u>yohell@ifm.liu.se</u>
- Soon-Heum ("Jeff") Ko <u>sko@nsc.liu.se</u>
- Peter Larsson pla@nsc.liu.se
- Weine Olovsson weiol@nsc.liu.se
- Johan Raber <u>raber@nsc.liu.se</u>
- Torben Rasmussen torbenr@nsc.liu.se
- Olav Vahtras <u>vahtras@pdc.kth.se</u>
- Jonathan Vincent jonvin@pdc.kth.se



Interface with Industry and Society

- External Advisory Group with international experts and representatives from industry and society
- Representatives from industry and society in e-Science communities, *only in a few cases so far*
- Develop software of industrial interest *when possible*, e.g. participating in open source code development
- Spin-off companies in electromagnetics, material science, medical visualization, etc., *when possible*
- Production of PhDs of interest to industry

SeRC Organization

- Steering Group (SG) decides about budget and strategic directions
- Advisory Group (AG) gives external advice
- Management Group (MG) help Director deal with day-to-day activities
- SeRC Faculty (SF) has internal advisory role and coordinates between communities (core/applied), researchers with substantial funding from SeRC

SeRC management

Steering Group

Dan Henningson Anders Ynnerman Juni Palmgren Anna Delin Gunilla Svensson Erik Lindahl Olof Runborg Bengt Persson

Erwin Laure

Jan-Eric Litton

Coordinators Olivia Eriksson **Philipp Schlatter** Ola Spjut **Berk Hess** Jeanette Hellgren Timo Ropinski **Tino Fbbers** Lars Bergquist **Rodrigo Caballero**

Björn Wallner

Management Group in Red

Advisory Group

- Niklas Blomberg (AstraZeneca)
- Morten Dæhlen (University of Oslo); Chairman
- Björn Engquist (KTH)
- David Jones (University College London)
- Claes Lundström (Sectra)
- Mattias Sillén (SAAB Group)
- Nicola Spaldin (ETH Zürich)
- Anne Trefethen (UK e-Science)

First two years of SeRC

- 150 researchers involved, including many PhD students
- 18 faculty positions recruited/identified
- About 40 SeRC funded projects defined, additional 150 Milj/year external funding
- 13 application experts financed and national portal organized
- 10 e-Science communities formed
- Flagship program on data management and modelling for cancer research
- External Advisory Group with international experts and representatives from industry and society established
- Three annual meetings and various community meetings
- MOU between LiU and KTH regarding cooperation of PDC and NSC
- First Swedish Tier 1 PRACE computer funded by VR and KTH
- Organization of IEEE e-Science conference, Dec 5-8, 2011
- Initiative to from international e-Science coordination/collaboration
- Web site launched <u>http://www.e-science.se/</u>

Examples of SeRC funded projects

• Directly funded SeRC projects 2010 and 2011

• Some of the research performed by SeRC funded faculty during 2010 and 2011

Bioinformatics

Modeling of membrane proteins. Arne Elofsson, Stockholm University

Goal: To develop methods that can accurately generate protein structure from protein sequences.

- Drugs act primarily against membrane proteins
- Difficult to study experi
- Structural information a
- Sequence databases gr
 Collaborations with core and core parallel computin
 People: Prof Arne Elofssor

People: Prof Arne Elofssor Peters, Marcin Skwark Highlight publication: Nat

SeRC BIO Project: High-throughput prediction of disease-causing SNPs

- Goal: Develop automated methodology to predict molecular consequences of disease-causing SNPs
 - Mapping structural effects of mutations
 - Use information about pathways to get a
 - Apply new methods on biomedically interproteins associated with cancer developm important membrane proteins.
- Background:
 - Many diseases are caused by single nucle cause an amino acid in a protein to be mu not cause a disease.
 - Today SNPs are readily detected in large s genetic variation.
 - Thus, improved prediction techniques wil

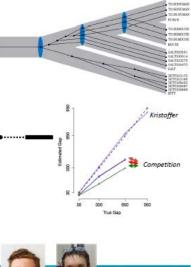
Collaboration with Complex Disease community and SeRC Flagship project.

SeRC BIO Community: Bengt Persson (LiU) Linus Östberg (LiU/KI) SeRC COM Community SeRC FLAGSHIP Project

Stockholms

Computational Evolution & Genomics

Goals


- Tools for inferring evolutionary history
- Better understanding of gene evolution
- Improved and specialized tools for genome assembly
- Results
 - Best gene tree inference when species tree is known
 - Accurate estimation of distance between genome "pieces"

- Collaborators – Jens Lagergren, Bengt Sennblad, Joakim Lundeberg, et c.
- Core collaboration interests
 - Distributed and parallel computing
 - Data management
 - Visualization

Group

- Mehmood Alam Khan, PhD student
- Hashim Ali, PhD student
- Kristoffer Sahlin, PhD studen
 - Francesco Vezzi, postdoc

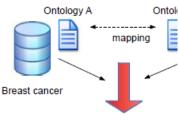
Complex Disease & Data Management

SeRC COM Project: Modeling heterosynaptic events in the striatum

d models of plasticity-related intracellular signaling dynamics in the striatal neurons grate with upper-levels in a multi-scale framework.

enge experimenter's verbal models ore experimentally inaccessible regions t in the rational development of therap

SeRC COM Project: Data integration in complex diseases


- topologies, parameters and phenotype: ublic repositories.
- nd fit preliminar ODE-based models, to spatially explicit stochastic models te with upper level models els regulating electrical properties) Acctytectment

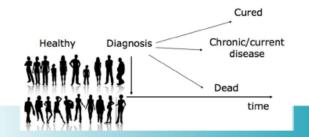
ant extension of a previous model to ERK activation and cholinergic modulat

eRC COM Community: eanette Hellgren-Kotaleski KTH, KI), Omar Gutierrezrenas (KTH), Olivia ricksson (KTH)

- Quality registries
- Biobanks
- Local study datal

Integrated analysis

Project members: Ola Spjuth (KI), Juni Palı Jesper Tegnér (KI), Maria Krestyaninova (E

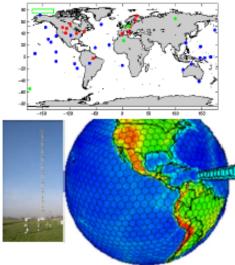


e-Science for Cancer Prevention and Cure

- a SeRC flagship project

Use statistical modeling and data integration in cancer research

- Individualized prevention strategies
- Individualized treatments



Climate

An Ensemble Single Column Model System

- Goal: To develop a user-friendly single column model of the global climate model EC-Earth that can run simultaneously at numerous locations from a web interface
 - ideal for studying sub-grid scale parameterizations
 - computationally much less expensive than the global climate model and, one-year integration <2 min
 - massively parallel: each column is run on a single processor means that one can instantly evaluate a change in the model physics at many different sites to find strengths and weaknesses in direct comparison with observations
 - easy to run without HPC experience

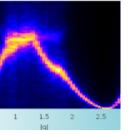
Swedish e-Science Research Centre

A year of cloud fraction in the Arctic region (70N, 160W), forced by "observed climate" (ERA-Interim re-analysis data)

Time [days]

SeRC Climate Modeling community Anders Engström (Postdoc, SU) Gunilla Svensson (SU) Rodrigo Caballero (SU)

EARTH

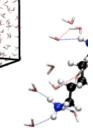

Electronic structure

Atomistic spin dynamics

relop and apply methods to study magnetization dynamics on the atomic scale formation technology (storage, next-generation memory devices) nomagnets (wires, clusters and nanostructures) erplay with thermal gradients (spin-calometry) ite temperature properties of magnets

onal methods:

- ic structure calculatic al theory to extract m c spin dynamics simu program a the stachastic land
- g the stochastic Land ve parallel implemen ectures (ongoing wor



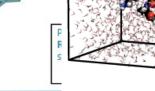
SeRC Electronic Structure Project: Multiscale Modeling Methods for Biomolecules

- Goal: Develop novel hybrid quantum mechanics/molecular mechanics (QM/MM)methods for computation of various spectroscopic properties of the biomolecules
 - Relevant for various simulations of various biomarkers in proteins and cellular

SeRC Electronic Structure Project: Conformational averaging for ECD spectra calculations

- · Goal: Develop an efficient method to obtain ECD spectra for flexible molecules
 - Spectra calculation for flexible molecules is a challenging task
 - MD simulations are performed to study the conformation at different temperatures
 - Snapshot extract from the MD trajectory are used to compute the ECD spectra with state of the art QM/MM response theory
 0.2 _____

SeRC Project: *Ab initio* simulation of st correlated materials: methods and appl


Goal: Development of an efficient first-principles framework for simulating stronglycorrelated materials and applying it to materials of technological and fundamental interest

- Combining ab initio band structure methods with an advanced treatment of electronic correlations provided by the dynamical mean-field theory (DMFT)
- Implementing simulation of various properties: ground-state and free energy, spectral function, magnetic properties, elastic modules
- Applications mainly to transition metal systems: Fe, Co, Ni, Mn at ambient and extreme conditions (high temperature/pressure).

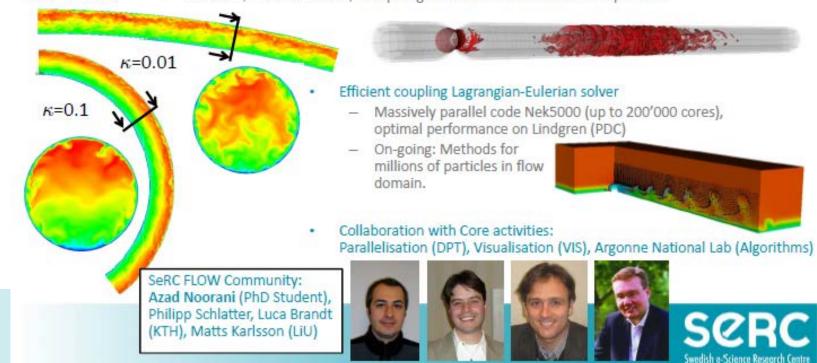
Current results:

- A package combining DMFT with the electronic structure Wien-2
- Applications to describing an electronic topological transition of
- Applications to describing an electronic topological transition

Large scale calculations

- Use of GROMACS (MM/MD) for long
- Use of DALTON (QM/MM response (solvent) on the electronic response

Mathieu Linares (LIU), Zilvinas Rinkevicius (KTH),

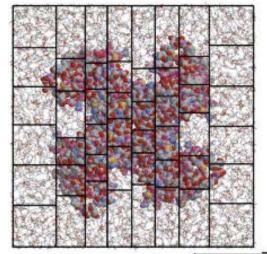

FLOW

SeRC FLOW Project: Methods for Lagrangian particles in complex geometries

- Goal: Develop, implement and apply methods for efficient Lagrangian particle tracking suitable for complex geometries
 - Relevant for various transport processes (drug delivery in blood flow), pollutants, etc.
 - Turbulence in straight and bent pipes as flow cases (never studied in detail!)

Re,=24000

- From simple to moderately complex geometries: Stenotic flow with particles



Molecular simulation

SeRC Molecular Simulation Project: Algorithms for parallel molecular dynamics simulations

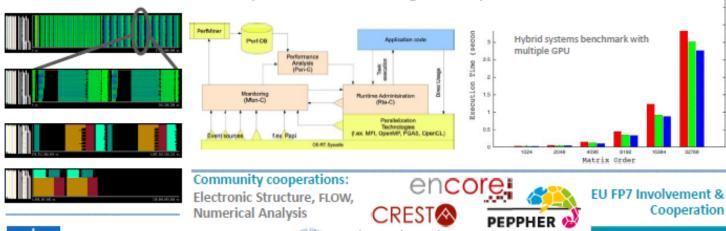
- Goal: Develop algorithms to allow molecular simulation of 100 000 to 10 million atoms on 1000 – 100 000 cores on heterogeneous computer architectures
 - Simulations of protein, DNA and RNA can take months of simulation time
 - Computers are getting more and more cores, as well as GPUs
 - New algorithms are required to tackle challenges in life sciences

Tightly coupled algorithms

- Hybrid MPI+OpenMP parallelization
- Domain decomposition with dynamic load balancing
- Efficient non-bonded kernels using SSE and CUDA (GPUs)
- Electrostatics are non-local -> limits scaling
- Collaboration with Core activities: Numerical Analysis (accurate parallel electrostatics solvers)

This SeRC project: Szilárd Páll (PhD-student) Berk Hess

Distributed and parallel techniques

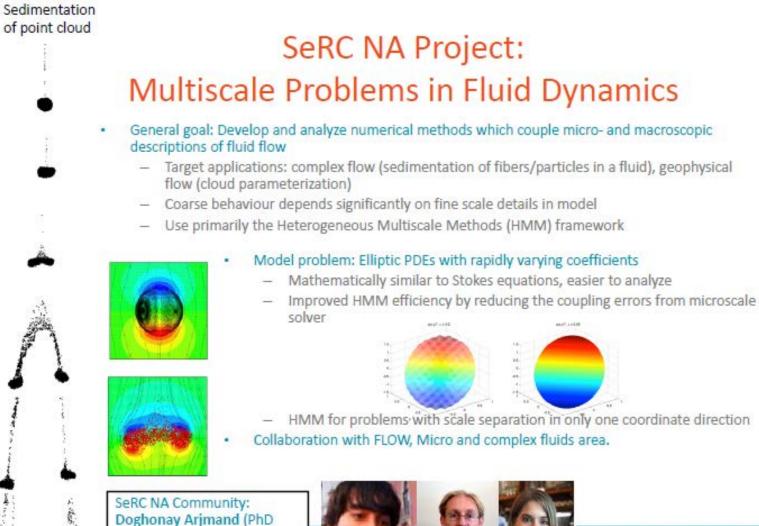

SeRC project OpCoReS

Optimized Component Runtime System for e-Science

A project of the Community Distributed and Parallel Techniques

Develop, implement and apply methods allowing efficient use of hybrid computer systems as well as large-scale clusters in numerical simulations

- Use of component-based, task-oriented programming models and high-level equationbased object-oriented textual/graphical programming models
- Efficient compilation of such models and composition of applications from components
- Exploitation of multi-level parallelism in application development as well as during runtime and associated performance monitoring and analysis



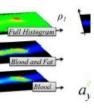
Erwin Laure, Mats Brorsson PhD students: Xavi Aguilar, Michael Schliephake *

Swedish e-Science Research Centre

Numerical analysis

Student), Olof Runborg, Anna-Karin Tornberg (KTH) Serc Swedish e-Science Research Centre

Clinically Applied Multivariate Volume Rendering


Visualization

Goal: Improved material separation in medical volume data

- Relevant for image-based medical diagnosis and organ-based analysis
- Enable anatomical transfer function design

Local histograms

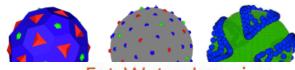
$\Gamma(\rho_2 - \rho_1)$

SeRC VIS Co Stefan Lindł

Student), Cl (CMIV), And

(CMIV), And

Efficient Methods for Volumetric Illumination


- Goal: Improve spatial comprehension of volume rendered images
 - Currently used illumination models are local
 - Global models are demanding with respect to computing
 - Interactive data exploration, which requires interactive frame rates

SeRC Project: Visualization of MR Diffusion Data

Goal: Develop a common theoretical framework for sampling, representation and visualization of in vivo diffusion processes

- Nested Rotationally Invariant Sampling Scheme for Diffusion MRI
- A mathematical representation o tensor pairs
- Monomial filter : order tensor rep of orientation or

Fat-Water Imaging

- Aims
 - Quantitative fat water imaging
 - Atlas based whole body image segmentation
 - Searchable database of human high resolution quantitative datasets
 - Quantitative image visualization

Clinical Applications
 Abdominal fat quantification

This weeks achter achte

Program

Tuesday 24/4		Wednesday 2	25/4
12.00 13.00-14.00	Lunch Welcome and presentation of SeRC faculty Dan Henningson (SeRC Director, KTH) Olof Runborg (SeRC faculty)	07.30 08.30-09.00	Breakfast Infrastructure Bengt Persson (NSC Director, LiU) Erwin Laure (PDC Director, KTH)
14.00-14.45	The Challenges of Petascale Computing William T.C. Kramer (NCSA, University of Illinois)	09.00-09.45	e-Science at Science for Life Laboratory Mathias Uhlén (SciLifeLab)
14.45-15.15	Coffee	09.45-10.15	Coffee
15.15-15.45	UNINETT Sigma and SNIC Jacko Koster (New SNIC director)	10.15-10.45	eCPC, e-Science for Cancer Prevention and Cure Ola Spjuth (eCPC project leader, KI) Sampsa Hautaniemi (Complex Diseases Community, Un
15.45-16.30	Visualization in Data Intensive Domains Timo Ropinski (SeRC Visualization Community, I	10.45-11.30	e-Science and Bioinformatics David Jones (University College London)
16.30-17.15	CFD in Hollywood Marcus Nordenstam (Exotic Matter)	11.30-12.00	Closure
17.15-19.00	Cross-community meetings and poster session	12.00	Lunch
19.30	Dinner		

