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Complex Diseases Require Data From
Several Levels
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The Role of Bioinformatics in Biomedical
Research

o Storing the data and computing power are the
first (but relatively small) hurdles.

o Analysis of large-scale, heterogeneous data is
much more challenging than individual genomics
or proteomics data analysis.

= It is a different matter to analyze a couple of tens of
samples than hundreds or thousands samples.

0 There is a need for computational
infrastructure.
= Writing an analysis program fast without

proper infrastructure will lead to delays and
errors in larger projects.



Anduril

o Anduril is a computational framework to integrate
large-scale and heterogeneous data, knowledge
in bio-databases and analysis tools.

0 The main design principles are:
= Modular pipeline analysis approach
= Scalable

= Open source, thorough documentation
http://csbi.ltdk.helsinki.fi/anduril

o Method written in any programming language
_exelcgtadble from the command prompt can be
included.

0 Produces automatically the result PDF and
website containing the results.

Genome Medicine

Large-scale data integration framework provides
a comprehensive view on glioblastoma
multiforme




Glioblastoma Multiforme

o Glioblastoma multiforme (GBM) is one of the
deadliest cancers.

0 The Cancer Genome Atlas (TCGA) has
published data from >500 GBM patients:

comparative genomic hybridization arrays

single nucleotide polymorphism arrays

exon and gene expression arrays

microRNA arrays

methylation arrays

clinical data

o Which genes or genetic regions have survival
effect?




D] Genome Medicine

Large-scale data integration framework provides
a comprehensive view on glioblastoma
multiforme

GBM Results in Anduril Website
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enetics Play a Key Role in Complex
Diseases

0 Even a small variation in DNA may have
severe effects to protein function, cell
phenotypes and survival.

Gene: CLDN10
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The Location of Mutations Matters

o Mutations are not equally distributed along
a gene.

0 Below BRAF-gene’s somatic mutations per
codon.
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Use of BRAF Inhibitor In Melanoma

Vemurafenib and BRAF mutations

Approximately 40-60% of cutaneous melanomas carry

mutations in the BRAF gene and the corresponding

protein displays increased kinase activity that results in

constitutive activation of downstream signaling path- The BRAF V600E allele is present not only in mela-
ways.® BRAF mutations are mainly located in the kinase nomas but also in other tumor types, including CRC
domain, with a single substitution of glutamic acid tumors where they are found in approximately 5-10%
for valine at codon 600 (V600E) accounting for 80% of cases.” It is noteworthy that the presence of the V60OE

of all mutations; other, less frequent, activating muta- BRAF mutation in CRC is apparently not predictive of
response to B-Raf inhibitors. For example, most patients

.. oL ) . with metastatic CRC carrying the BRAF V600E allele
causing it to be constitutively active.®* Vemurafenib was ;. I B2 those that respond do

developed to inhibit the mutated B-Raf protein,® and s to a much lesser extent than has been observed in
has shown marked antitumor effects on melanoma cell  patjents with melanoma.® The reasons for this discrep-
lines carrying the BRAF V600E allele but not in cells with ~ ancy are not clear; one possibility is that in CRC the
wild-type BRAE®+® In a phase III randomized clinical

trial (BRIM-3), single-agent vemurafenib produced

improved rates of overall and progression-free survival

. . . . . Targeted therapies: how personal should
in patients with metastatic melanoma, as compared with we g0?
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Genome Medicine: Big Numbers and
Promises

o In genomics the number are big.

= 3x10° nucleotides
= 20,000-25,000 genes
= ~100,000 proteins

O These are just the building

blocks.
= Quite a bit to do in categorizing
these...
o Real topics still unresolved:
= Dynamics
= Context at the pathway level
= Interactions
= Impact of cell decisions




Summary

0 Characterization of a complex disease first
requires identifying the key variables.

O We have tools to measure inner life of
cells.

= Flood of data.

= Demand for data management and analysis
tools.

= Demand for novel experimental designs and
hypotheses.

o0 Personalized medicine is taking first steps.




