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UK Turbulence Consortium

e Since 1995, now 46 academics at 21 UK institutions
 Allocations on national HPC facilities
e Support of porting, benchmarking and optimisation

* Proliferation of codes

e Since 2018 focus limited resources on a small
number of open source codes

* InCompact3D, CodeSaturne, Nektar++ and OpenSBLI



Outline

* Legacy SBLI code
* Methods & sample application

* Future-proofing simulation codes
* OPS approach (source-to-source translation)
* Automatic code generation: OpenSBLI

e Performance and outlook towards Exascale
e Store vs recompute on various hardware platforms

* Energy consumption



Brief overview of numerical approach

Compressible Navier-Stokes, Newtonian fluid, multi-block curvilinear grids

* Fourth order accurate (central) space differencing,
e Explicit in time RK3 or RK4

* Equation conditioning (entropy splitting, Laplacian formulation
of viscous term)

* Avoid filtering for direct numerical simulations (DNS)
* |ocal oscillations in DNS if flow under-resolved

* Mixed time scale sub-grid model for large eddy simulations
(LES)

* Shock capturing (if selected) applied as full-step filter TVD
+ACM+Ducros

* Legacy SBLI code (Fortran 95)



Example: High-fidelity studies on transonic buffet:
Markus Zauner PhD 2019

Block 2

\T’

V2C wing profile

Mach number:
M=0.7

Reynolds number:
Re=500,000

Prandtl number:
Pr=0.72

Sutherland law:
Csuth=0.41



Speed up normalised to 635 nodes [-]

Basic code: Scaling on HazelHen (PRACE)
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V2C Grid

1

® Generation: PolyGridWizZ (in-house code)
e https://github.com/ZaunerM/PolyGridWizZ

Multiblock structured grids for direct numerical simulations
of transonic wing sections
M. Zauner & N. Sandham IOPen Sourcel
Proceedings of ICCFD10, Barcelona, 2018

® Gridpoints: Block 2: 3045 x 999 x 150
Block 1/3: 1999 x 1023 x 150
Total: 1.07 - 107 points

® Spanwise domain: L, = 5%,

o Cell size:  Time step = 2- 1075 time units

Trailing edge: ¢ 2.5-107* ¢
£€33-107%c
n1.0-107* ¢

® Costs: 132,079 CPUh per time unit

30,000 processors -> ~4 hours for 1 time unit



Error indicators

Workflow:

e Parametrised structured grid
generation

e Spectral error indicator

* lterative 2D grid adaptation

* |terative 3D grid adaptation
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PRACE(HazelHen):

SW B Ll 7 PFlops peak
towardas
exascale (-

Transonic airfoil DNS at Re=500,000
(but for wind tunnel Re and 1c span we’d need
a similar share of a ~“7ExaFlop machine)

- Projections and issues:
. CPU, GPU and potential mixed/novel architectures
. energy efficiency
. fault tolerance
- data compression
- in-situ graphics

- Porting may require a non-trivial code rewrite, requiring expertise in

fluid dynamics, numerical methods, and parallel computing paradigms,
and their efficient implementation

o ...and newer architecture might arrive during porting



Investigation of future-proofing with OPS

(EPSRC project 2014-2016)

OPS: Oxford Parallel library for Structured-mesh computations
- Key people: Gihan Mudalige, Istvan Reguly, Mike Giles
- Multi-block structured applications

- Source-to-source translation for parallel implementations on various
architectures

- Very little overhead with the automation process for hydrodynamic
applications e.g. CloverLeaf

Example for simple stencil averaging

ops_par_loop: * Substantial coding required,
int range[4] = {imin,imax,jmin,jmax}; even for simple operations
ops_par_loop(calc, block, 2, range,

ops_arg_dat(a,S2D_0,”double”,0OPS_WRITE),ops_arg_dat(b,52D 1,”double”,OPS_READ))
Kernel:

void calc(double *a, const double *b) {
a[OPS_ACC0(0,0)] = 0.5*(b[OPS_ACC1(1,0)] + b[OPS_ACC1(-1,0)];)
}




Proof of concept: Shu-Osher case

Left state(x<=-4) | Right state(x>-4)
Density = 3.857143 | 1+0.2%*sin(x)
Velocity =2.629369 | O

Pressure =10.3333 |1

! I | I | I | | |

— — — Solver
Reference

Validation grid N=2500

Density profile
compared with WENO
(Pirozzoli) at t=1.8

eJammy et al
(ParCFD 2015)

Speed ups of up to 6.57x on GPU (NVIDIA Tesla K20c 2946 CUDA cores
5GB memory) vs CPU (Intel® Xeon®E5-2640 @2.5GHz 12 cores MPI).
Also tested OpenCL and OpenMP with no change to code



OpenSBLI . ongoing experiment in automatic code generation

Separation of concerns.

-User describes the problem at a higher level.

-Numerical analyst develops the numerical algorithm which generates
.a sequential model code in OPS-compliant C.

.Computer scientist handles parallel backend implementation.

Problem +
Numerical
Method (high
level)

Low level

code

"""""""""""""""""""""" > OPS Library

OpenSBLI

Python, with SymPy building blocks
Expand the summation indices of PDEs
Automatic code generation
Apply spatial, temporal and boundary schemes
Create computational kernels
Generate OPSc code
Output LaTeX files of kernels for debugging



Example

« 50 line high-level problem definition for the 3D compressible Navier-Stokes equations

. 2000 line generated sequential OPS C code
. 20K lines of generated code for MPl and CUDA

# Number of dimensions for the problem
ndim = 3

# Define the compresible Navier-Stokes equations in Einstein notation.

mass = "Eq(Der(rho,t), - Conservative(rho*u j,x j))"
momentum = "Eq(Der(rhou i,t) , -Conservative(rhou i*u j + KD( i, j)*p ,x j) + Der(tau i j,x j))"
energy = "Eq(Der(rhokE,t), - Conservative((p+rhoE)*u j,x j) + Der(q j,x j) + Der(u i*tau i j ,x j))"

equations = [mass, momentum, energy]

# Substitutions

stress tensor = "Eq(tau i j, (1.0/Re)*(Der(u i,x j)+ Der(u j,x i)- (2/3)* KD( i, j)* Der(u k,x k)))"
heat flux = "Eq(q j, (1.0/((gama-1)*Minf*Minf*Pr*Re))*Der(T,x j))"

substitutions = [stress tensor, heat flux]

# Define all the constants in the equations
constants = ["Re", "Pr","gama", "Minf"]

# Define coordinate direction symbol (x) this will be x i, x j, x K
coordinate symbol = "x"

# Formulas for the variables used in the equations
velocity = "Eq(u i, rhou i/rho)"

pressure = "Eq(p, (gama-1)*(rhoE - rho*(1/2)*(u j*u j)))"
temperature = "Eq(T, p*gama*Minf*Minf/(rho))"

formulas = [velocity, pressure, temperature]



void taylor green vortex block® 69 kernel(const double *wk20 , const double *wk47 , const double *wk2l , const double
*wk28 , const double *ul , const double *wk29 , const double *wkl9 , const double *wk® , const double *wkl5 , const
jouble *wk35 , const double *wkl8 , const double *wkll , const double *wkl2 , const double *wk3l , const double *wk8 ,
const double *wk37 , const double *wk34 , const double *wkl® , const double *wk30 , const double *wk39 , const double
*wkd44 , const double *ub , const double *wk40 , const double *wk46 , const double *wk45 , const double *wk4l , const
jouble *wk25 , const double *wk3 , const double *wk7 , const double *wkl , const double *wk2 , const double *wk33 ,
const double *wk6 , const double *wk32 , const double *wk38 , const double *wkl4 , const double *wk42 , const double
*wk26 , const double *wk43 , const double *u2 , const double *wk22 , const double *wk24 , const double *wk27 , const
double *wk5 , const double *wk23 , const double *wk9 , const double *wk4 , const double *wkl7 , const double *wkl3 ,
const double *wk36 , const double *wkl6 , double *wk49 , double *wk48 , double *wk50 , double *wk51 , double *wk52)

wk48[OPS ACC52(0,6,0)] = -wkl1[OPS ACC11(6,0,0)] - wk14[OPS ACC35(0,6,0)] - wk2[OPS ACC308(0,0,0)];

wk49[OPS ACC51(0,0,0)] = rinv11*(wkB[OPS ACC7(0,0,0)] + wkd4[OPS ACC20(6,0,0)]) +
rinv11* (wk3[OPS ACC27(0,0,0)] + wkd7[0PS ACC1(6,0,0)]) + rinv11*((rc4)*wk16[OPS ACC50(0,0,0)] -
rc6*wka4[OPS ACC20(0,0,0)] - rc6*wkd7[OPS ACC1(0,0,0)]) - wk18[OPS ACC16(0,0,0)] - wk20[0PS ACCO(0,0,0)] -

wk29[0PS_ACC5(0,0,0)] - wk39[0PS_ACC19(0,0,0)]; OPSC Examp|e Of

wk50[0PS ACC53(0,6,0)] = rinv11*(wk13[OPS ACC48(0,0,0)] + wk42[OPS ACC36(0,0,0)]) +

rinv11*(wkd43[OPS ACC38(0,0,0)] + wk5[OPS ACC43(0,0,0)]) + rinvl1*((rcd)*wk26[0PS ACC37(0,0,0)] -
rc6*wkd2[0PS ACC36(0,0,0)] - rc6*wk43[0PS ACC38(0,0,0)]) - wk21[OPS ACC2(0,0,0)] - wk27[OPS ACC42(6,0,0)] - auto-generated
wk31[0PS ACC13(0,0,0)] - wk41[OPS ACC25(0,0,0)]; K | f ]
wk51[0PS ACC54(0,0,0)] = rinv11*(wk22[OPS ACC40(0,0,0)] + wkdS[OPS ACC24(6,0,0)]) +
rinv11* (wk46[OPS ACC23(0,0,0)] + wk7[OPS ACC28(0,0,8)]) + rinvll*((rc4)*wk4[OPS ACC46(0,0,0)] - ernel ror computlng

rc6*wka5[0PS ACC24(0,0,0)] - rc6*wkd46[OPS ACC23(6,0,0)]) - wk2B[OPS ACC3(0,0,0)] - wk32[OPS ACC33(0,0,0)] - idual of
wk36[0PS_ACC49(0,0,0)] - wk9[OPS ACC45(0,0,0)]; resiaual o

wk52[0PS ACC55(0,0,0)] = rinvll*rinv12*rinv13*rinv14*wkl9[OPS ACC6(0,0,0)] + C ibl .
rinvl1*rinv12*rinv13*rinv14*wk30[0PS ACC18(0,0,0)] + rinvl1*rinv12*rinv13*rinv14*wk35[0PS ACC9(0,0,0)] + -
rinv11*(wkB[OPS ACC7(0,0,0)] + wkd4[OPS ACC20(0,0,0)])*ud[OPS ACC21(0,0,0)] + ompressible Navier
rinv11*(wk1[OPS ACC29(0,6,0)] + wk23[OPS ACC44(0,0,0)])*wk1[0PS ACC29(6,0,0)] + .
rinv11*(wk1[OPS ACC29(6,0,0)] + wk23[OPS ACC44(0,8,0)])*wk23[0PS ACC44(0,0,0)] + Stokes solution
rinv11*(wk12[OPS ACC12(0,0,8)] + wk37[OPS ACC15(0,0,0)])*wk12[0PS ACC12(0,0,0)]
rinv11*(wk12[OPS ACC12(0,0,8)] + wk37[0PS ACC15(0,0,0)])*wk37[0PS ACC15(0,0,0)] +
rinv11*(wk13[OPS ACC48(0,0,8)] + wkd2[OPS ACC36(0,0,8)])*ul[OPS ACC4(0,0,0
rinv11*(wk15[OPS ACC8(0,0,0)] + wkB[OPS ACC14(0,0,0)])*wk15[0PS ACC8(0,0,0
rinv11*(wk15[0PS ACC8(0,0,0)] + wkB[OPS ACC14(0,0,0)])*wk8[OPS ACC14(0,0,0
rinv11*(wk22[OPS ACC40(0,0,08)] + wkd5[OPS ACC24(6,0,0)])*u2[0PS ACC39(0,0,
rinv11*(wk3[OPS ACC27(0,6,0)] + wk47[OPS ACC1(6,0,0)])*uB[OPS ACC21(0,0,0
rinv11* (wk43[OPS ACC38(0,0,0)] + wkS[OPS ACC43(0,0,0)])*ul[OPS ACC4(0,0,0
rinv11*(wkd6[0PS ACC23(0,0,8)] + wk7[OPS ACC28(0,0,0)])*u2[0PS ACC39(0,0,
rinv11*((rc4)*wk16[OPS ACC58(0,0,0)] - rc6*wk44[OPS ACC20(0,0,0)] -
rc6*wka7[0PS ACC1(0,0,0)])*uB[OPS ACC21(0,0,8)] + rinvll*(-rc6*wkl7[OPS ACC47(0,0,0)] -
rc6*wk25[0PS ACC26(0,0,0)] + (rcd)*wk34[OPS ACC16(0,0,0)])*wk34[0PS ACC16(0,0,0)] +
rinv11*(-rc6*wk17[OPS_ACC47(0,0,0)] + (rcd4)*wk25[0PS ACC26(0,0,0)] -
rc6*wk34[0PS ACC16(0,0,0)])*wk25[0PS ACC26(0,0,0)] + rinvl1*((rcd)*wkl7[OPS ACC47(0,0,0)] -
rc6*wk25[0PS_ACC26(0,0,0)] - rc6*wk34[0PS ACC16(0,0,0)])*wk17[0PS ACC47(0,0,0)] +
rinv11*((rcd)*wk26[0PS ACC37(0,0,0)] - rc6*wk42[OPS ACC36(0,0,0)] -
rc6*wka3[0PS ACC38(0,0,0)])*ul[OPS ACC4(0,0,8)] + rinvll*((rcd)*wk4[OPS ACC46(0,0,0)] -
rc6*wk45[0PS ACC24(0,0,0)] - rc6*wkd6[0PS ACC23(0,0,0)])*u2[0PS ACC39(0,0,0)] - wk1B[OPS ACC17(0,0,0)] -
wk24[0PS_ACC41(0,0,0)] - wk33[OPS ACC31(0,0,0)] - wk3B[OPS ACC34(0,0,0)] - wk4B[OPS ACC22(0,0,0)] -
wk6[0PS ACC32(0,0,0)];
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Future-proofing with OPS

Model code in
OPS API

Translator

Parses the OPS calls
Generates optimised
versions for various
architectures

Source code remains unchanged

/1 MPI
/;I OpenMP

7| CUDA

—> OpenCL

\I OpenACC
\I ?7?7?

Newer architectures require backend
translator to be written




Integral of enstrophy

Verification & Validation (OpenSBLIv1)

. 3D Taylor-Green vortex

= )
. N-S Equations ' . |
. Re = 1600 ‘ ‘
. CPU(ARCHER), GPU(K40c)
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Parallel SC3|Ing on CPU Cray XC-30 (ARCHER)
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Extrapolation to Exascale?
- Flops constrained by RAM (limited size/bandwidth)?

. Algorithmic changes to exploit the flops by reducing memory usage
and data transfers?



Parallel scaling MPI+CUDA

* Good weak scaling up to 64 P100 GPUs:
3D Taylor-Green vortex case, meshes ranging from 277 million to 4.3 billion points.

Weak scaling on NVIDIA P100 GPUs 16 Strong scaling on NVIDIA P100 GPUs
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Number of nodes. 1 node =4x P100 GPU

10243 grid points per node

NVIDIA P100, Mellanox EDR Infiniband
(Cambridge CSD3 Wilkes2)



Verification & Validation (OpenSBLIv2)

Shock-wave boundary-layer interaction Katzer case

100
Mach 2 80

inlet g 60
40

20

L0
Target architecture (processes/ | Time (s) | Speed-up S
threads) —
ARCHER node CPU — vy Bridge  413.1 1.00 1 |
(24 MPI) s |
Intel Xeon Phi KNL 7210 (64 MPI)  224.7 1.84
1x GPU NVIDIA Tesla K40 204.6 2.02

1x GPU NVIDIA Tesla P100 44.0 9.39 B



Architecture performance comparison

Architecture/compiler Runtime (s) | Speed-up
Intel Skylake (40 cores @ 2 GHz, 40 MPI, Intel 17.0 -O3 -fp-model fast) 174.1 1.0
NVIDIA Pascal 16GB P100 (CUDA 8.0, nvce -03) 54.5 3.2
NVIDIA Volta 16GB V100 (CUDA 9.0, nvee -O3) 35.2 4.9

Table 1: OPS single node runtime comparison on different architectures for 100 iterations. The time for the
CPU node (Intel Skylake Xeon Gold 6138) with 40 MPI processes is taken as the baseline.

* Single GPU performance on NVIDIA P100/V100 compared to
Intel Skylake CPU node

* 3D SBLI simulation with 16 million points
* NVIDIA V100 is ~5x faster than a 40 core Skylake node



Flexible algorithms

The main limitation of GPUs is the memory capacity (16GB per P100 vs 196GB per CPU
node):

Difficult to fit large enough problems on each GPU.

Code-generation gives greater flexibility in how the code is written -> recompute quantities
on the fly to reduce work arrays and memory access.

Exploit the OpenSBLI framework to compare different algorithmic
choices without rewriting low-level code

o Baseline (BL) — all the derivatives are stored in work arrays

a Recompute All (RA) — all continuous derivatives in the governing equations
are replaced by their discretised formula

o Recompute Some (RS) — only the first derivatives of velocity are stored
and the rest recomputed

a Store None (SN) — all the derivatives are evaluated as thread/process local
variables

a Store Some (SS) — only the first derivatives of velocity are stored and the
rest are evaluated as thread/process local variables



Implementation

Taylor-Green vortex problem at Re=1600 (643 to 2563)

Per RK Baseline | Recompute | Recompute | Store Store
substep All Some None Some
Kernel calls 87 4 12 4 12
Local 0 0 0 63 53
variables

Work 67 5 14 5 14
arrays




Algorithmic performance

CUDA Tesla K40c, runtime (s)

Grid Size | Baseline | Recompute | Recompute Store Store
(Millions) All Some None Some
0.2 9 6 6 6 5
2.09 57 35 35 41 33
16.77 495 259 256 302 246
ARCHER node (24 MPI processes), runtime (s)
Grid Size | Baseline | Recompute | Recompute Store Store
(Millions) All Some None Some
0.2 16 9 11 8 10
2.09 183 98 97 91 89
16.77 1562 765 803 694 685




Power consumption
and energy efficiency
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Advantages and limitations of the
automated code-generation approach

~ New DSLs can be readily integrated

~ Flexibility of algorithms, methods and equations
~ Run time and energy efficiency

»  External libraries (e.g. FFT) and implicit solvers need to be
implemented in both OpenSBLI and OPS

Debugging for errors at different levels may be more difficult
(partially mitigated by LaTeX debugging)

o Outlook:

o Separation of concerns should enable better software maintainability
o Some flexibility to match algorithms to architectures, looking towards exascale

o Open source under GNU GPL: https://opensbli.github.io



