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 “Coupling numerical methods on different scales” 



1. Challenges for multiscale computation 
and coupling of models 

•  A major e-science challenge: large amount of data – for 
simulations large number of unknowns and flops 

•  Common reason for this: multiscale phenomena 
•  With the size of the computational domain = 1 in each 

dimension, the smallest wavelength = ε and d dimensions, the 
number unknowns needed to describe a band limited function is 

€ 

# unknowns ≥O(ε−d ) [Shannon, 48]



Multiscale modeling 



Multiscale modeling: analytic and/or 
computaional 

•  If processes on different scales are important and  

 ε << 1          derive effective, equations 
     (model reduction, homogenization theory,  

  upscaling, averaging, boundary layer theory,) 

               use the micro model in small domains and couple  
   different models in the same simulation  

€ 

# unknowns ≥O(ε−d )



Coupling of different models  
(high fidelity model on small subsets) 

•  The goal is improved computational efficiency from only 
simulating the smallest scales on sub domains.    

 Type A: Microscale model only in sub domain Ω2   
 Type B: Microscale input needed throughout computational 
domain from sampled sub domains  



Examples of strategies 

  Special purpose methods 

•  Quasi continuum method (elasticity - molecular dynamics) 
•  Superparametrization (atmospheric science) 



Examples of strategies 

  Special purpose methods 

•  Quasi continuum method (elasticity - molecular dynamics) 
•  Superparametrization (atmospheric science, see fig.) 

  General frameworks 

•  Generalized multigrid, [Brandt] 
•  Equation-free computation, [Kevrekides] 
•  Heterogeneous multiscale method (HMM) (✔) 



2. The heterogeneous multiscale method 
(HMM) framework  

1.  Design macro-scale scheme for the desired variables. The 
scheme may not be valid in all of the computational domain or 
components of the scheme may not be known in full domain. 

2.  Use micro-scale numerical simulations locally in time or space 
to supply missing data in macro-scale model 

€ 

Macro : FH (UH ,D(uh )) = 0
Micro : fh (uh ,d(UH )) = 0
→ FH (UHMM ,DHMM (UHMM )) = 0



HMM: nonlinear conservation law example 

•  nonlinear conservation law based on an empirical equation of 
state, 

•  The macro-scale fluxes could, for example, be computed on the 
fly by microscale molecular dynamics simulations, 

€ 

ρt +∇ ⋅ (vρ) = 0
(ρv)t +∇ ⋅ (vρv + p) = 0
et +∇ ⋅ (ve + vp) = 0
p ≈ (γ −1)(e − ρv 2 /2)

€ 

m j

d2x j (t)
dt 2

= −
∂Vj (x)
∂x j

, j =1, ... J



 Set up approximation by a shock capturing finite volume method 
(FVM) for the effective nonlinear conservation law, 
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f (u) = 0, u j
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 Traditional numerical algorithm, for example, the Godunov scheme 
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If f (u) known

approximate f (u(x j +1/ 2,τ)
tn

tn+1

∫ dτ

by numerical flux
Δt F(u j

n ,u j +1
n )
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HMM 

Estimate the flux by replacing the numerical flux in the FVM by a 
microscale simulation, with appropriate initial and boundary conditions. 
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u j
n +1 = u j

n −Δt−1 ( f (u(x j +1/ 2,τ )) −
tn

tn+1

∫ f (u(x j−1/ 2,τ ))dτ
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m j

d2x j (t)
dt 2

= −
∂Vj (x)
∂x j

, j =1, ... J

Computational complexity gain from MD in local domains 

Compare homogenization 



Computational issues 

•  New techniques 
–  Data estimation (from micro data to macro model) 
–  Reconstruction techniques (from macro states to micro data) 
–  Boundary conditions for local micro-scale simulations 

•  Concurrent or sequential 
•  Choice of macro-scale variables 
•  Size of micro domain? 
•  Need for scale separation (✔) 



 

[Ariel, E, Eqt, Holst, Li, Ren, Runborg, Sharp, Sun, Tsai]. 

Applications 



Example, shocks in solids 

macro: strain, velocity and 
displacement  
FVM 200 grid points, 40 steps 
micro: MD 40X10 atoms,10000 
steps, Lennard – Jones 
potential 



Slip line example 

•  No slip boundary condition for Naver-Stokes fails at slip line 
•  This is a type A problem (conservation law was type B) 



Slip line example 

•  No slip boundary condition for Naver-Stokes fails at slip line 
•  This is a type A problem (conservation law was type B) 



Slip line example 

•  Coupling: fluid and 
 line velocity and  
 shear stress 

•  Heat bath for MD 



Analysis of convergence: 
heat equation in composite material 

•  The relation between molecular dynamics and nonlinear 
conservation laws is not mathematically well established 

•  A related diffusion problem for composite media with 
homogenization based analysis is possible 

€ 

f (u)→a(x /ε)∇u
∂uε

∂t
=∇⋅ (a(x /ε)∇uε

a(y) periodic



Steps in HMM convergence proof 

•  Stability and consistency of microscale problem  
•  Convergence of computed microscale flux to homogenized flux 

within numerical micro domain 
–  Homogenization theory 
–  Eigenvalue estimates for transient  

•  Stability and consistency of macroscale algorithm   

€ 

(uh → uε , h→ 0)

€ 

(−∇ ⋅ (a(x /ε)∇uε → −∇ ⋅ A∇U, ε → 0)

€ 

(UH →U,H→ 0)

€ 

(UH →U , h /ε → 0, ε → 0, H → 0)



3. The issue of scale separation 

•  HMM as described above require substantial scale separation  

€ 

δx < λmax < l

€ 

l < Δx < Λmin

€ 

λmax << Λmin



ODEs with oscillatory solutions 

•  Applications: dynamical systems, astrophysics,.. 
•  Separation of fast and slow modes 

•  Effective equation of ODE or SDE 

•  Invariant measure µ independent of v(0) 

€ 

dx
dt

= fε (x) →

du
dt

= f (u,v)
dv
dt

= ε−1g(u,v)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

€ 

ε → 0⇒ u→ u : du 
dt

= f (u ,v)dµu (v)∫



HMM discretization 

•  Effective 〈 f 〉 value for standard  
 macro-scale solver from average 
 of standard micro-scale data over δ-ntervals 

€ 

˙ x ε = fε (xε ,t)

€ 

f j ≈ Kk f j+k
k
∑

€ 

du 
dt

= f (u ,v)dµu (v)∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



A more seamless technique 

•  FLow AVeraging integratORS (FLAVORS) [Tao, Owhadi, 
Marsden, 09], also [Vanden-Eijnden, 07], VSHMM [E., Lee, 13] 

•  Staggered or fractional step evolution 
€ 

dx
dt

= fε (x) = f (x) + ε−1g(x)

t 

€ 

F = f

€ 

F = f + ε−1g

€ 

F = f

€ 

F = f
…. 



Convergence FLAVORS 

•  Convergence proof based on transformation to action angle 
formulation with ergodic fast mode 

•  Convergence slower than for HMM 
•  Compare Monte Carlo 
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dt
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dt
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H h   
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du 
dt

= f (u ,v)dµu (v)∫



Remarks 

•  The  Fermi-Pasta-Ulam problem is also appropriate for this 
technique 

•  Natural choice of ergodic, fast sub-system: fast linear springs 
(harmonic oscillators) 

€ 

˙ x = f (x) +ε−1g(x) ( full system)
˙ y = ε−1g(y) ( fast linear springs)



Fermi-Pasta-Ulam 

    

   BF HMM Verlet-ODE45 to T = 7ε−1  



PDE example  

•  Advection enhanced diffusion in incompressible turbulent 
velocity field 

•  There exists solid convergence theory for special velocity fields 

€ 

∂u(x, t)
∂t

+ vε (x)⋅ ∇u(x, t) = µΔu(x,t)

∇⋅ vε (x) = 0
u(x,0) = u0(x)



Decomposition of velocity field and 
solution into frequency bands  

•  Many locally refined grids 
matching the different 
frequency bands bands – 
compare multigrid 

•  Decomposition into 
frequency bands – compare 
LES 

•  Does not describe 
interaction between high 
frequency bands 



In frequency space 

•  Each diagonal box has 
its own grid 

•  Sheer flow via 
analytical formula 



Example: passive advection 
(turbulent velocity field) 



4. Remarks on imaging and visualization 

Data 

Original 
image 

Processed 
Image 

Computer vision 

“The imaging or visualization 
pipeline also contains many 
aspects of multiscale 
processes” 

Visualization 



 Examples of Multiscale processes in 
imaging pipeline 

•  Basic image construction (✔) 
–  Build image from measured data, direct or inverse problem 

•  Denoising 
–  Eliminate unwanted small scales 

•  Deblurring 
–  Image correction enhancing small scales 

•  Inpainting 
–  Correct small scale distorsions 

•  Image compression 
–  Approximations keeping small scale features, JPEG, etc. 



 Examples of Multiscale processes in 
imaging pipeline 

•  Segmentation 
–  Small scale features (curves, texture) from coarser scales 

•  Rendering 
–  Ray equations, microscale textures  

•  Level of detail in visualization 
–  Data structures, compression and approximation of smaller 

scales 
•  Scale-space theory in computer vision [Tony Lindeberg, 94] 

–  Today linked to feature extraction and machine learning 



Example: seismic Imaging 



Compare tomography 

Source  
Source  

Receivers  

Receivers  



Tomography – Radon transform 

•  The Radon transform ( fR ) - Inversion: measure fR find f 
•  Computer assisted tomography: Allan M. Cormack, Godfrey N. 

Hounsfield Nobel prize 1979 

€ 

fR (α,ω) = f (x(s),y(s))ds
L(α ,ω )∫

f (x, y) = T(α,s)dα dω∫
T = ˆ f R (α,ω)ω ei2πω (x cosα +yα )

ˆ f R : Fourier transform

€ 

L(α,ω )



Seismic imaging 

•  Find velocity and reflectivity (or low 
and high frequency part of velocity 
field) separately 
–  First velocity estimation: similar 

to tomography but harder: 
bending “rays”, wave action 

–  Then reflectivity: details too 
small for velocity estimation, 
compare ultrasound imaging 

•  Full waveform inversion in 
frequency domain (Helmholtz) 



Multiscale aspects 

•  Fast Helmholtz solver: preconditioning 
based on compression rather than 
multigrid 

•  HMM style representation of 
microscale features layers etc. for 
effective equation 



Multiscale aspects 

•  HMM style techniques can be used in the inverse process 
•  Parameterization of local properties 

€ 

min
α

data − uα + λ uα *( )



Conclusions 

•  There are frameworks guiding simulations coupling models of 
different scales 

•  Realistic applications emerging 
•  Convergence theory possible in some cases 
•  Recent development to reduce need for scale separation 


