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SimulaDng	climate



Atmospheric	models

Solve for u, T, q, cld on 3-D grid. 

Where we are now: 50 km resolution 
Where we would like to be: 5 km resolution => ~1000 greater cost



Climate	models



Climate	model	inter	comparison	(CMIP)

(Steve Easterbrook)

Community effort to intercompare climate models by conducting 
simulations using the same standardised  protocol across ~30 
different models worldwide. Closely associated with IPCC 
Assessment reports



How	CMIP	data	is	stored

on ESG nodes. Tier 3 typically will host the services 
needed to publish data to ESG, and to execute data-
product requests made through an ESG gateway that 
may serve data requests to many associated nodes: for 
example, more than 20 institutions are expected to 
operate ESG nodes for the CMIP5 database. Because 
personnel with varying levels of expertise will oper-
ate ESG nodes, the tier 3 software will come with 
extensive documentation.

Component design. The components designed by 
ESG-CET will help solve the challenges posed by 
petascale data archives. An in-depth description of 
relevant technologies follows.

Metadata. Metadata lies at the heart of other major 
components, especially the search and browse facili-
ties and the publishing system. Thus, metadata design 
is a priority for ESG-CET.

Current ESG software focuses on metadata for 
gridded datasets generated from climate model 
simulations. The next-generation version will 
expand the scope of data to related subject areas, 
such as model-based assimilations of observa-
tions and predictions of climate change impacts. 

ESG-CET also will support 
both derived and virtual 
datasets. [Derived data-
sets are products resulting 
from transformation of 
one or more “raw” data-
sets. Virtual datasets have 
all the properties of tra-
ditional data except that 
they lack location informa-
tion. For example, a virtual 
dataset can be generated 
from a hyperslab request 
specifying data only in 
the United States covering 
a specified time period. 
Server-side processing to 
generate derived statis-
tics on the virtual dataset 
can continue the process 
further (see Fig. 4).]

In addition, ESG is be-
ginning to design a new 
search capability based 
on the concept of “faceted 
classification” that assigns 
multiple classifications to 
an object, allowing these 

classif ications to be ordered in different ways 
(Adkisson 2003). The user will see search terms and 
categories that apply within the current context, and 
thus will be able to avoid queries that would return 
empty results. Similarly, organizing metadata around 
facets will provide important flexibility, because the 
categories can be updated without impacting the rest 
of the system.

ESG-CET also is working with related metadata 
projects to ensure consistency with emerging com-
munity standards. For example, members of the 
Earth System Curator (ESC) and MetaFor projects 
are participating in the design process, and ESG-
CET is exploring how the respective metadata 
schemas intersect. Because both ESC and MetaFor 
emphasize the viewpoint of the data producer, they 
have developed schemas that allow a rich description 
of the structure of models and model components; 
in contrast, ESG-CET takes the viewpoint of the 
end user, who is typically more concerned with the 
scientific aspects of the simulation. The union of 
these metadata schemas thus will make for a richer 
and more comprehensive database, and will ensure 
that ESG can interface with data/metadata derived 
from ESC and MetaFor.

Fig. 4. In this example a user searches the ESG-CET portal from a remote site. 
Required data are found at the distributed data node sites [e.g., the NCAR 
deep storage archive, and the British Atmospheric Data Centre (BADC) fast 
access disk]. Using popular climate analysis tools (e.g., CDAT, Ferret, NCL), 
the user regrids the data where they physically reside before transferring the 
reduced data subset to the PCmDI gateway, where further intercomparison 
diagnostics are performed on the disparate datasets, and the desired products 
then are returned to the user’s platform.
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CMIP output stored on Earth System Grid: 
distributed system with “smart” search capabilities. 

Users download data files and analyse on their own systems



How	much	data	do	CMIPs	generate?

Current generation: CMIP6 (2015-2020) 

Core set of simulations: 
- historical 
- next 3 centuries  
- range of warming scenarios  
Total: 8000 simulation years  

If we save 4 snapshots/day: ~ 15 petabytes  
only for the atmosphere of 1 model !! 

About 30 models, include ocean, land etc. 
-> several exabytes 

Include non-core MIPS 
-> 10-100 exabyte range …



One	way	to	meet	the	big	data	challenge:

• Generate	10-100	exabytes	of	data	
• Throw	99%	of	it	away.	

• Do	we	really	not	need	that	99%?
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Storm-friendly	large-scale	flow	condiDons

(Hanley & Caballero 2012)



A	2-pronged	strategy:

• Do	some	analysis	online	
–things	we	know	we’re	interested	in	and	need	high	Dme	
resoluDon,	e.g.	cyclone	tracking	

–SSF	proposal	w/Tino	Weinkauf	et	al.		

• Store	(lots)	of	data	for	analysis	offline	
–things	we	don’t	know	we’re	interested	in	a	priori	
–needs	new	tools	for	storing	data	on	cheap	commodity	
clusters	and	speeding	up	analysis	

–FAST	MCP	



FAST

• 1st	stage:	Create	a	climate	data-friendly	
environment	within	the																eco-system	
–ie.	how	do	you	efficiently	store	climate	model	output	
on	hadoop		

• 2nd	stage:	Develop	FAST	analysis	library	
–exploiDng	the	parallelism	intrinsic	in	hadoop	

• 3rd	state:	Explore	deep	learning	capabiliDes	
–	e.g.	families	of	events



Storage and Processing of Big Data



What	is	Apache	Hadoop?

• Huge	data	sets	and	Parallel	Processing	
–Scales	to	thousands	of	nodes	on	commodity	hardware	

• Schema-less	or	with	Schema	
• Fault	tolerant	
• Data	Locality	Aware		
• OpDmised	for	analyDcs:	high-throughput	file	
access
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FAST	Parquet

• Data	re-organised	into	a	row	schema	with	a	column	for	each	
variable	(resolving	coordinates)	

• Variables	with	lower	dimensionality	are	duplicated,	but	Parquet	
opDmises	duplicates	away	by	compressing	columns	

• Every	parDDon	is	self-describing	(schema	
duplicated)	

• Every	row	is	independent	(no	cross	referencing)
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Data Processing in Apache                      

map, reduce, filter, join, …

SQL Statements (select, join, where, …)
Matrix operations (add, multiply, …)

input



Diurnal	Temperature	Range

• J.	Lindvall	and	G.	Svensson,	2015:	The	diurnal	temperature	range	in	
the	CMIP5	models.	Climate Dynamics,	44	(1-2),	405-421.	

• Reproduce	the	analysis	using	Spark	and	Parquet.
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Diurnal	Temperature	Range

– J.	Lindvall	and	G.	Svensson,	2015:	The	diurnal	temperature	range	in	
the	CMIP5	models.	Climate	Dynamics,	44	(1-2),	405-421.	

• Reproduce	the	analysis	using	Spark	and	Parquet.	
• Results:	

–Absolute	Error:	mean≈5.4x10-16,	stdev≈1.4x10-15,	max≈5.32x10-15	
(double	precision	is	∼16	decimal	digits)	

–Time:	1min30s	for	∼64MB	(no	parallelism,	a	lot	of	overhead,	
∼0.7MB/s)	

–20GB	take	around	14min	(parallelism	of	30,		∼23MB/s)	

–Performance	improves	with	larger	datasets…working	on	650GB	at	
the	moment

https://github.com/ClimateFAST



Conclusions

• Analysis	of	large	datasets	can	benefit	from	using	
plahorms	such	as	Apache	Hadoop	and	Apache	
Spark.	

• ExisDng	file	formats	in	climate	science	need	to	be	
re-wriien	to	exploit	data	parallel	capabiliDes	of	
Hadoop	and	Spark.	

• The	FAST	project	is	developing	plahorm	support	
for	scalable	climate	science	analyDcs	on	Hadoop	
and	Spark.


