Feature-Based Flow Visualization

Tino Weinkauf HPCViz, CSC, KTH Stockholm

- **Professor of Visualization** HPCViz, CSC, KTH Stockholm
- Research Group Leader, 2011 2014 Max Planck Institute for Informatics, Saarbrücken, Germany
- Adjunct Assistant Professor Postdoc, 2009 – 2011 Courant Institute of Mathematical Sciences, New York University
- Researcher, PhD, 2001 2009 Zuse Institute Berlin / University of Magdeburg
- Studies: Computer Science at University of Rostock

Visualization at KTH

Tino Weinkauf

Professor —

Chris Peters

PhD students

Associate Professors

Mario Romero

Björn Thuresson

Engineer

Gregorio Palmas

Himangshu Saikia Feature-Based Flow Visualization, Tino Weinkauf, SeRC Meeting June 2015

Zhongjie Wang @ MPI

Henrik Edlund

- Professor of Visualization
 Linköping University
- Research Group Leader, 2012 2014 DLR, Göttingen, Germany
- Emmy Noether Group Leader, 2006 2012 Zuse Institute Berlin
- **Postdoc**, 2003 2006 UC Davis, U.S.A.
- PhD, 1999 2003 University of Kaiserslautern, Germany
- Studies: Physics at University of Munich

Ingrid Hotz

Milestones in Flight History Dryden Flight Research Center

Circa 1970s

Flow behind a cylinder. Data courtesy of Bernd R. Noack (TU Berlin).

- mimicking real-world visualizations
- enhanced visualizations
- feature-based visualizations

Feature-Based Visualization

reduction of information interactive visualization faster analysis

vortex structures

Padberg-Gehle et. al., 2015

almost-invariant sets

topological structures

Vortex Structures

Cores of swirling motion geometry of particle trajectories

Swirling motion cores for path lines

Vortex quantities

λ₂, Okubo-Weiss,
 pressure, ...

Isosurfaces of Okubo-Weiss parameter

Vortex cores as extremal lines

- Height ridges/valleys
- Separatrices of the topological skeleton

Maximal line of Okubo-Weiss

Classic Visualization

Feature-based Visualization

user interaction required full resolution required

automation possible

H. Theisel and H.-P. Seidel Feature Flow Fields, VisSym 2003

• Feature Flow Field: vector field **f** at **x** pointing into direction where the feature continues

- Numerical stream line/surface integration is well-understood
- Stream object integration independent of underlying grid
- FFF gives theoretical tool for classifying local bifurcations

- H. Theisel and H.-P. Seidel Feature Flow Fields, VisSym 2003
- H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel
 Stream Line and Path Line Oriented Topology for 2D Time-Dependent Vector Fields,
 IEEE Vis 2004
- T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel Feature Flow Fields in Out-Of-Core Settings, TopolnVis 2005
- X. Zheng and A. Pang *Topological Lines in 3D Tensor Fields and Discriminant Hessian Factorization*, TVCG 2005
- H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel Extraction of Parallel Vector Surfaces in 3D Time-Dependent Fields and Application to Vortex Core Line Tracking, IEEE Vis 2005
- S. Depardon, J. J. Lasserre, L. E. Brizzi, and J. Borée Automated topology classification method for instantaneous velocity fields, Experiments in Fluids 2007
- J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz Efficient Computation of Combinatorial Feature Flow Fields, TVCG 2012

Data courtesy Bernd R. Noack

flow behind a cylinder – tracked vortex core lines

Sujudi/Haimes criterion

Okubo Weiss criterion

Continuous Methods

challenged by noise derivation interpolation

Discrete Methods

more robust no derivation or interpolation purely combinatorial

Discrete Morse Theory

Continuous Methods

challenged by noise derivation interpolation

Discrete Methods

more robust no derivation or interpolation purely combinatorial

Discrete Morse Theory

Continuous Methods

challenged by noise derivation interpolation

Discrete Methods

more robust no derivation or interpolation purely combinatorial

Discrete Morse Theory

separatrix persistence

Feature-Based Flow Visualization, Tino Weinkauf, SeRC Meeting June 2015

D. Günther, H.-P. Seidel, T. Weinkauf Separatrix Persistence 3D, CGF 2012

Valleys in a subregion of the Martian surface:

- Noisy data yields complex network
- Separatrix persistence allows differentiation between prominent and noise-induced valleys

Separatrix Persistence

Flow behind a cylinder: isosurfaces of Okubo-Weiss parameter

filtered extremal lines of Okubo-Weiss parameter

Separatrix Persistence

filtered extremal lines (continuous model, height ridges)

Graph Matching Problem

Volumetric data

Computation Morse-Smale complex $O(n^3) \rightarrow O(n^2)$

Significantly smaller memory footprint for simplification and persistent homology

Dissertations: David Günther (Advisor: Tino Weinkauf) Jan Reininghaus (Advisor: Ingrid Hotz)

Feature-Based Flow Visualization, Tino Weinkauf, SeRC Meeting June 2015

Data set size: 1120 x 1131 x 1552 (ca. 8 GB)

Computation of persistent homology

Memory footprint: 500 GB → 14 GB

Data courtesy: ZIB, Daniel Baum Distance field of a Chaperon protein

H. Theisel and H.-P. Seidel *Feature Flow Fields*, VisSym 2003

J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz *Combinatorial Feature Flow Fields*, TVCG 2012

J. Reininghaus, J. Kasten, T. Weinkauf, I. Hotz *Combinatorial Feature Flow Fields*, TVCG 2012

Feature-Based Flow Visualization

Tino Weinkauf HPCViz, CSC, KTH Stockholm