
Making big data work for biomedicine

Gil McVean

UNIVERSITY OF

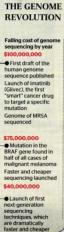
THE TIMES | Wednesday August 3 2011

How a DNA first for girl, 4, changed a family's world

A child with a skull abnormality has blazed a trail by having her entire genetic code read, Mark Henderson writes

A four-year-old girl has become the first person in Britain to have her entire genetic code read to identify the cause of a disease, in a landmark development that illustrates how personal genetics is changing healthcare. Katie Warner, from Saffron Walden,

Essex, and her parents John and Maria had their genomes sequenced by scientists at the University of Oxford to pin-


Katie Warner, who has a cranio-facial condition, with her mother Marie

diagnosis has been difficult. We might now have a label that makes every-thing crystal clear. Katie's definitely behind, there are no two ways about it. But we've had problems getting her statemented for school. We know that her condition is going to affect her learning, and we can do something about that immediately: it's going to make the battle we have with education authorities much easier. Starting understand why, and what she'll be able to do, and not, is a big help." Several children have been diagnosed by genome sequencing in the US, including one who, as a result, was

successfully treated for a bowel disorder with a bone marrow transplant. Katie is the first child in Britain to benefit. Katie has a condition called craniosynotosis, which causes sections of her skull to fuse early so there is insuffi-

cient room for her brain to grow. She has had two operations to relieve pressure on her brain, one when she was just seven months old. The precise cause was unknown, making it difficult for her doctors to give a prognosis. Though the NHS does not yet provide genome sequencing for unex-

plained disorders, Katie was referred to Andrew Wilkie, a consultant clinical geneticist at the University of Oxford who specialises in craniofacial disorders. Professor Wilkie is involved in an Oxford research project supported by Illumina, a DNA sequencing company which is sequencing 500 genomes of people with serious diseases and their

Lung

Bone

1

provi

other

drive

.....

2000-

2001-

2002

2003

2004

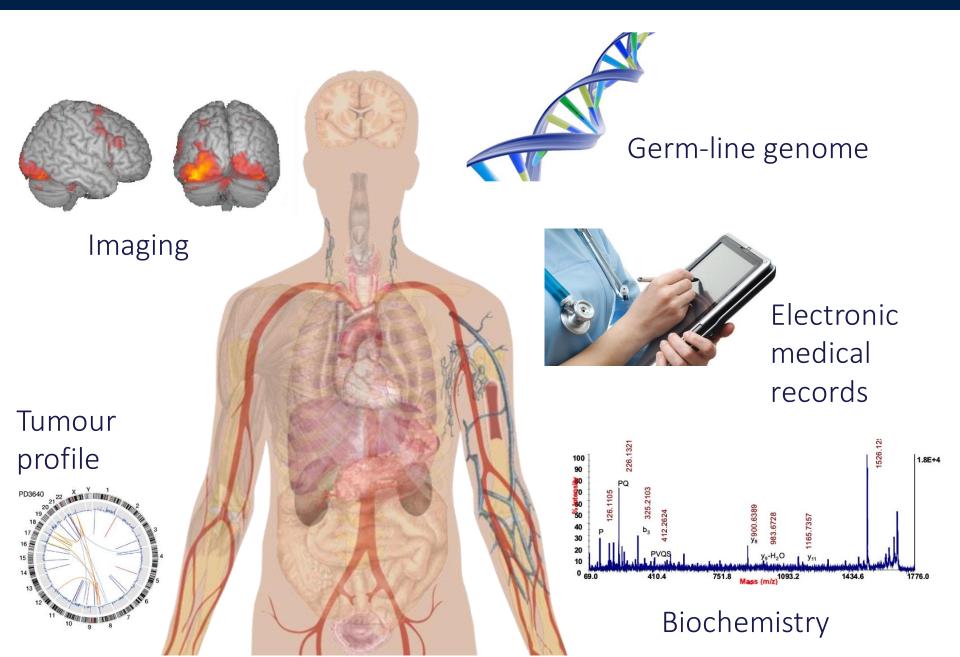
2005

2006

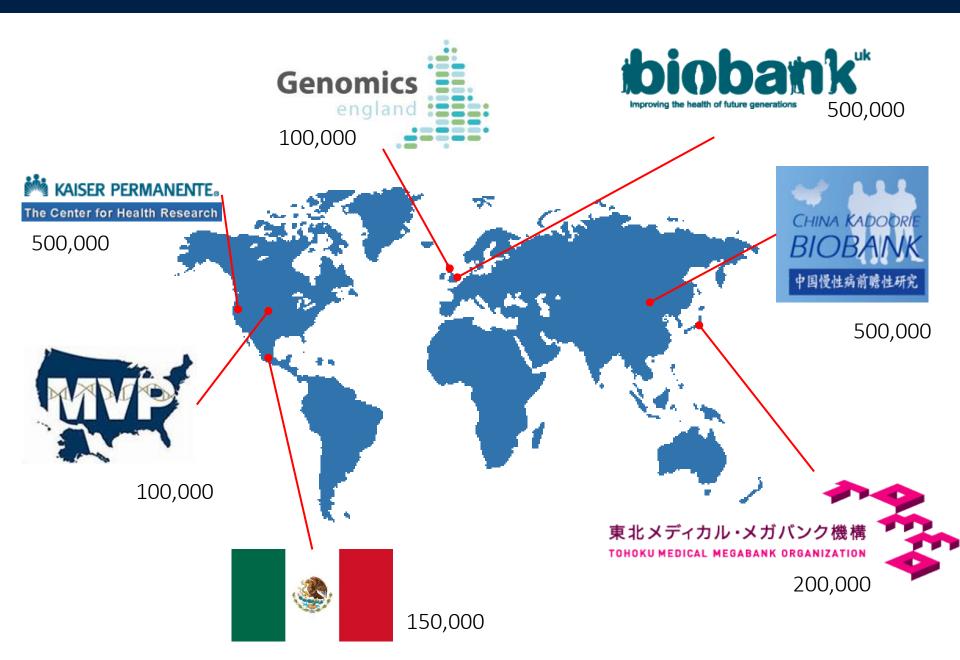
2007-

2008

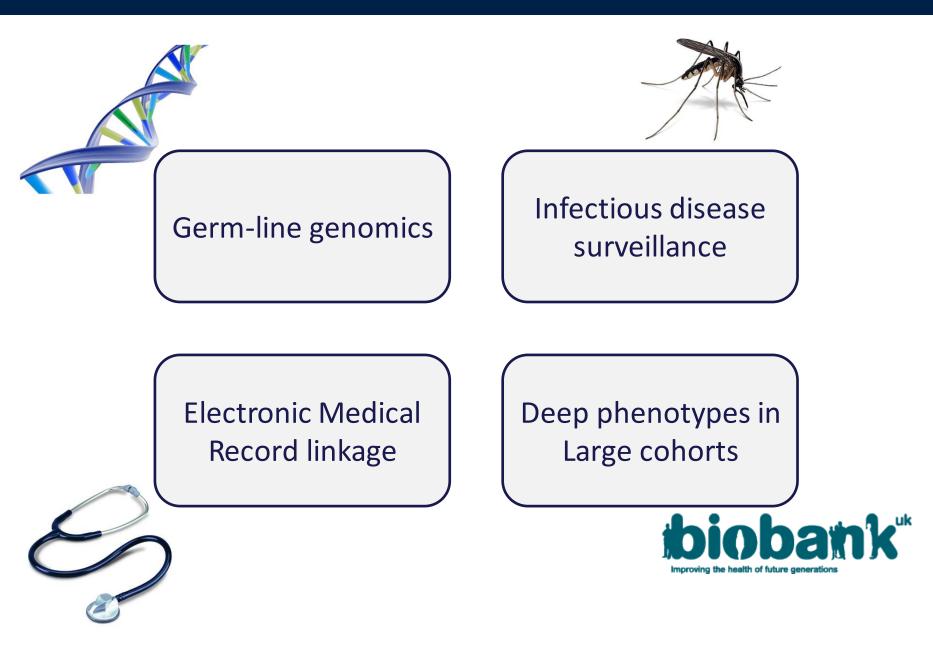
2009

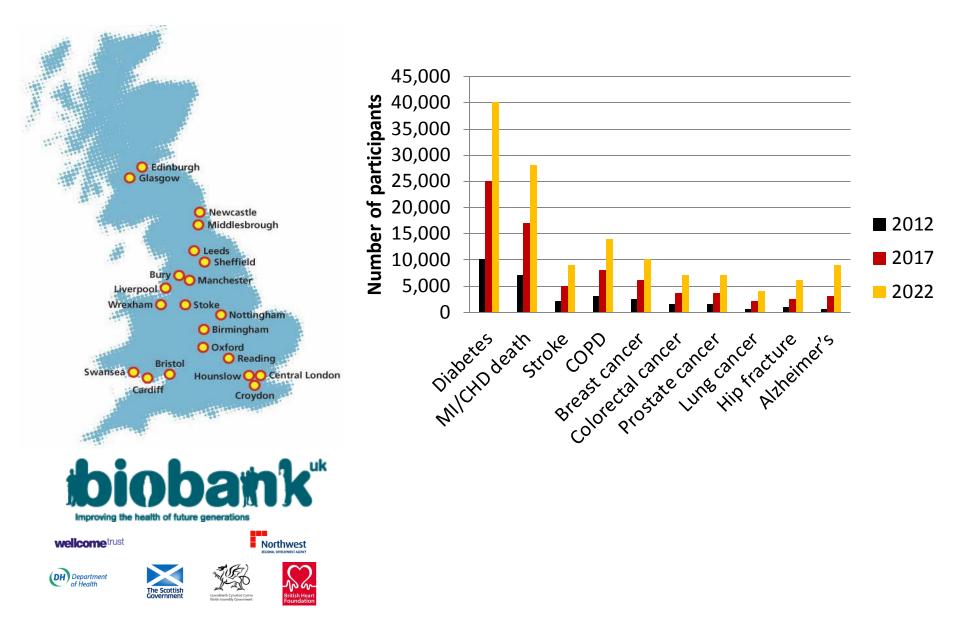


\$2,000,000 mutal can h • Scientists at University of Washington find the parer cause of Miller syndrome \$100,000 Child with bowel


disorder is

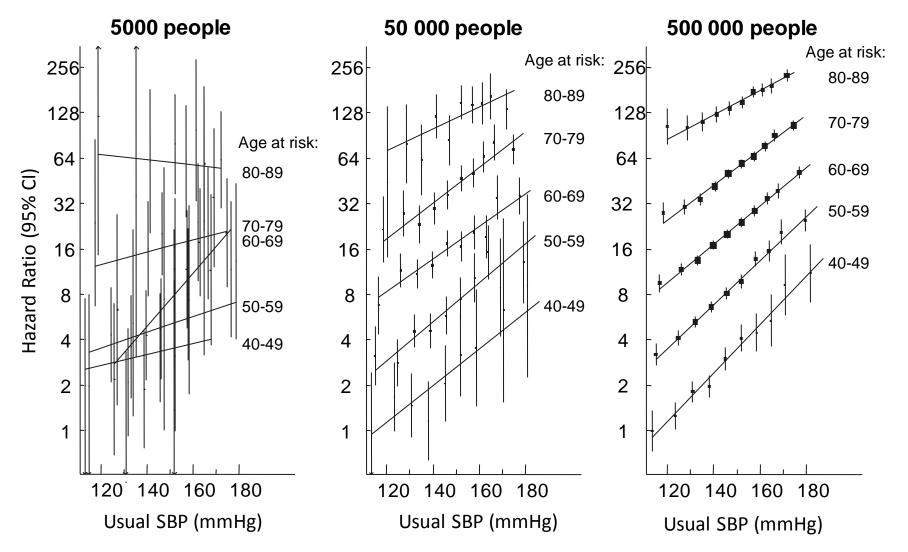
- Large, population-scale data sets typically made possible by innovations in high throughput technology
 - Genome sequencing
 - Mobile and internet technology
 - Imaging and automated image processing
- Data sets that are large, high dimensional, semi-structured and highly heterogeneous
 - Large, requires distributed and cloud computing
 - Cannot be stored in standard database structures
 - Hard to summarise / visualise
 - Collected in many different ways by many different agents
 - Requiring new statistical and computational methods to analyse


Medical big data sources


Population-scale medical cohorts with genomic data

The Oxford Big Data Institute

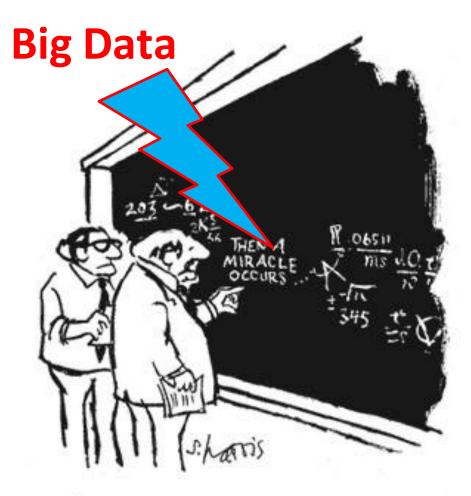
Big data and epidemiology



Enhanced phenotyping

- Web-based diet questionnaires on 300,000
 - cognitive assessments planned
- Repeat assessments on 20,000
 - further repeat every few years
- Wrist-worn accelerometers on 100,000
- Standard panel of laboratory assays + genotyping on 500,000
- Imaging visit in 100,000
 - to include whole body and brain MRI, carotid ultrasound, bone (DEXA)
- On-going linkage to additional data sources
 - hospital, primary care, disease register
 - environment

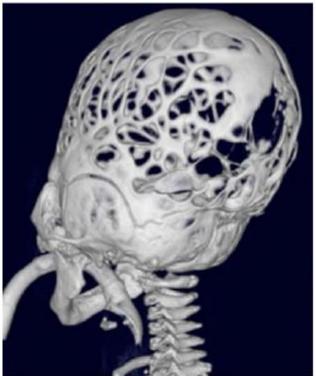
The value of large numbers: Ischaemic heart disease and systolic blood pressure


Courtesy of Prospective Studies Collaboration, unpublished

The promise of biomedical big data

- Better diagnosis
- Better treatment choice
- Improved target discovery
- Improved target validation
- Better outcomes

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."


Putting genomics at the heart of Big Data

- Genetics has a direct and unequivocal relationship to phenotype
 - Germ-line gives exposure from birth
 - Finding the gene immediately informs about the patient
- Genomic data is accurate and easy to collect on a population scale
 - SNP genotype data -> GWAS on 100,000s
 - Sequencing at a population scale
- Genomic data can be used to probe causal relationships between biomarkers and disease
 - Natural variation mimics pharmaceutical interventions
- Genomic data provides a fingerprint for monitoring infectious disease control programmes
 - Can established transmission networks at micro and macro scale

Big data in the clinic

Genome sequencing as a clinical tool

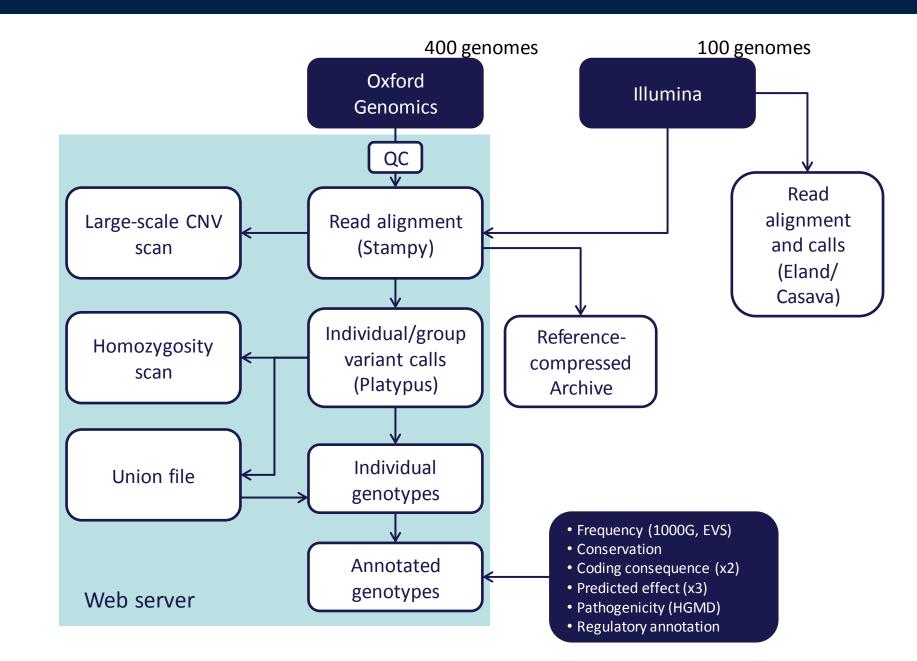
The value of whole genome sequencing

• Whole-genome sequence is the only data type that can detect all types of information relevant to pathology in a single go:

Data type	Large-scale structural changes	Balanced translocations	Distant consanguinity	Uniparental disomy	Novel / known coding variants	Novel /known non-coding variants
Targeted gene sequencing	No	No	No	No	Yes	No
SNP arrays	Yes	No	Yes	Yes	No	No
Array CGH	Yes	No	No	No	No	No
Exome	Partial	No	Partial	Partial	Yes	No
Whole genome	Yes	Yes	Yes	Yes	Yes	Yes

WGS500 – initiated in 2011

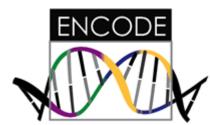
Collaboration




- Sequence 500 genomes at 30x
- Diverse set of diseases (>40 phenotypes)
 - Mendelian disorders (without mutation in screened genes)
 - Sporadic (extreme) immune phenotypes
 - Cancers
- Diverse set of experimental designs
 - Familial: Linkage information, trios, quartets
 - Cancer: Tumour-normal, metastases, multiple-mets, ...
- Substantial follow-up (screening and functional) to establish candidacy

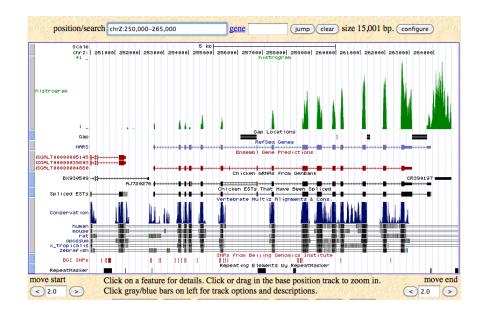
What is big data about this study?

1. Infrastructure

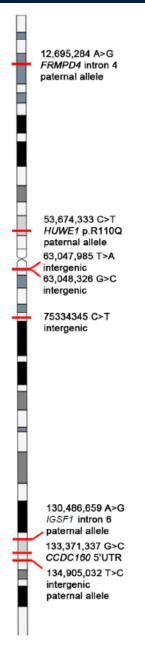

2. Standards for data exchange and alignment

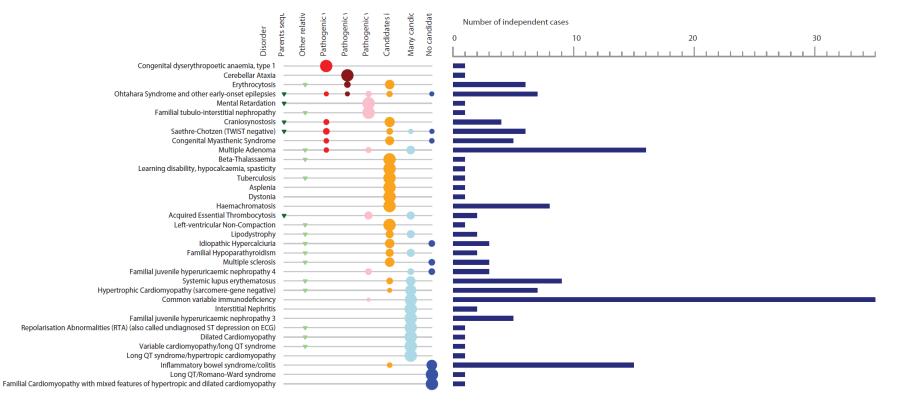
3. Use of heterogeneous external data


Online Mendelian Inheritance in Man



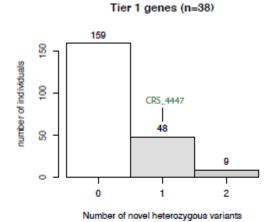
PHYLOGENETIC ANALYSIS WITH SPACE/TIME MODELS




What did we find?

- Sequenced child and both parents
- De novo mutation in HUWE1, a known mental retardation gene
- Skewed inactivation on the X chromosome towards chromosome with mutation
- Multiple additional de novo mutations
- No other HUWE1 cases in >100 additional cases screened

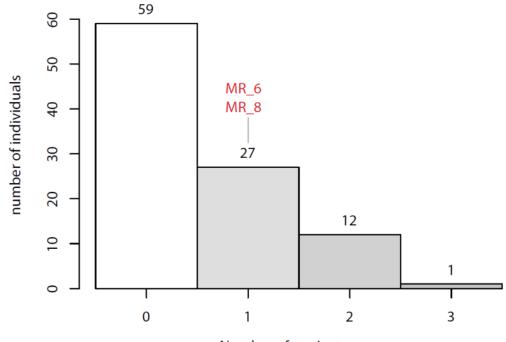
Over 25% of cases with clear diagnosis



What limits success?

1. Ability to predict biological consequence

Protein-protein interactions and related disorders


Same pathway

Known disease genes

Do 40% of males have mental retardation?

Rare hemizygous coding variants at conserved positions in known 71 X-linked Mental Retardation genes

Number of variants

2. Sample size: The Genomics England 100k project

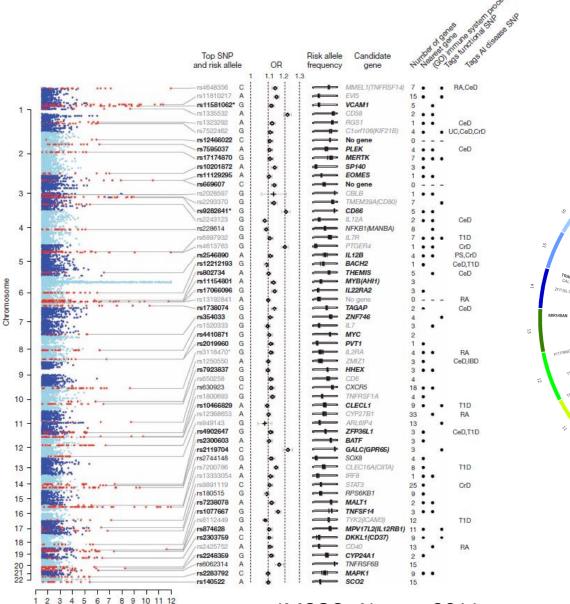
- 100,000 genomes sequenced in rare disease and cancer by 2017
- Linkage to medical records

Global Alliance for Genomics and Health

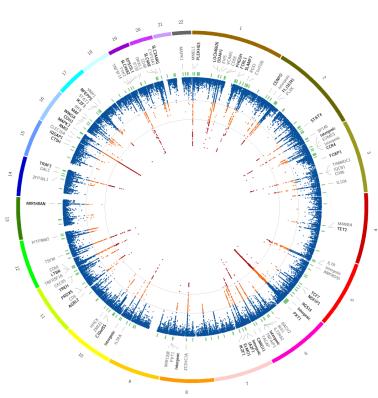
What is the Global Alliance?

The Global Alliance for Genomics and Health Ihealth.org/about-global-alliance n,

What is the Global Alliance doing?


The Global Alliance for Genomics and Health has doubled in size since its formation and the

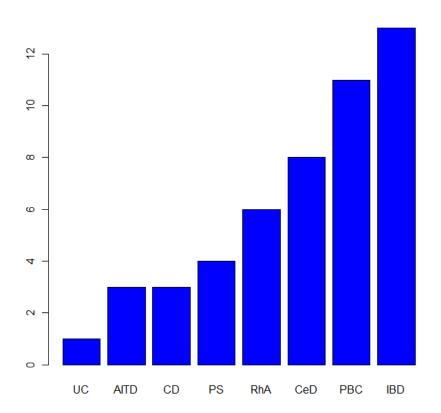
Who is involved?


The Global Alliance for Genomics and Health (Global Alliance) is a broad and inclusive

What will large data sets deliver?

1. A (growing) understanding of complex disease mechanisms

-log10 P value



IMSGC. Nature Genet. 2013

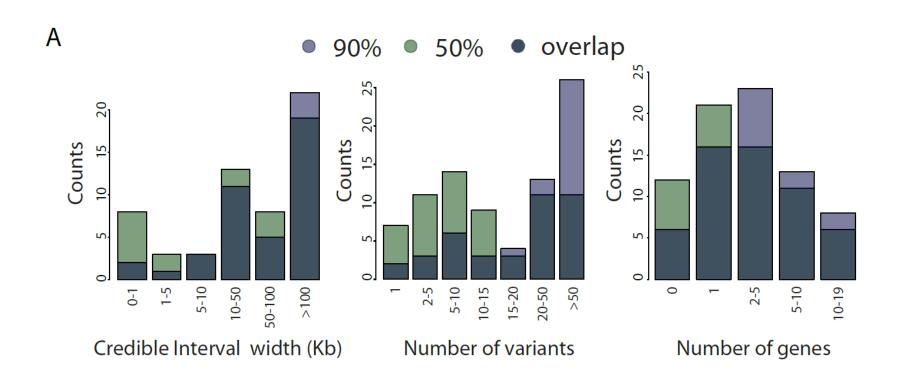
IMSGC. Nature 2011

What have we learned?

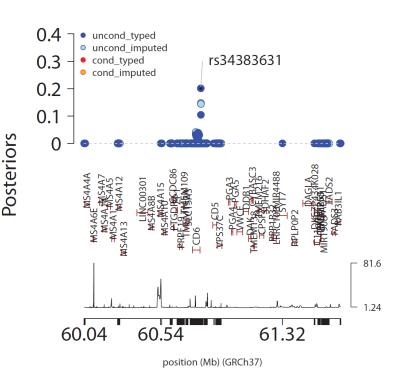
- About 113 current risk loci for multiple sclerosis
- Explains c. 30% sibling recurrence risk (10% of that is HLA)
- C. 30% of loci overlap with other autoimmune diseases

Can we map causal variants from GWAS?

ARTICLES

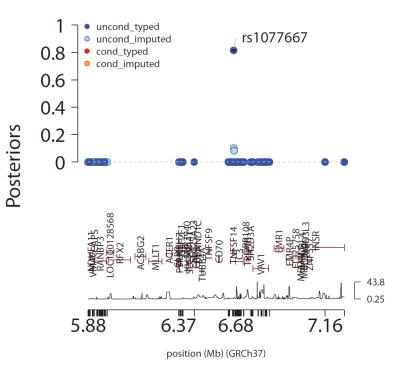

genetics

Bayesian refinement of association signals for 14 loci in 3 common diseases


The Wellcome Trust Case Control Consortium^{1,2} 80 rs1800693 16 P=6.92e-16 60 12 Observed (-logP) Recombination rate (cM/Mb) r² 40 8 20 4 •••• ----<u>, 5</u> 0 0 PLB(HG8 TNFRSF1A SCNN1A

> 6300 Chromosome 12 position (hg18) (kb)

About 5% of signals fine-map to <5 variants



Occasional success at fine-mapping

meta Chr 11Gene CD6 around rs34383631 (rs34383631)

meta Chr 19Gene TNFSF14_around_rs1077667 (rs1077667)

IMSGC, 2013

But there is little indication of function....

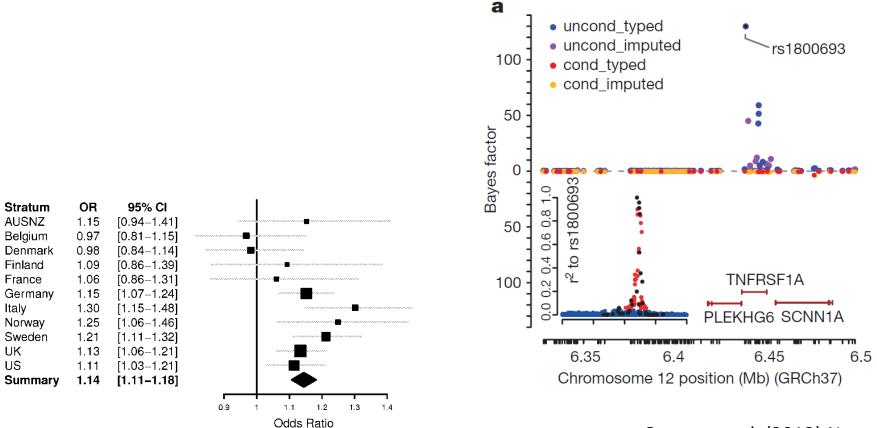
Gene	riants from the 8 r SNP	Chr	Position ^a	Posterior	GERP	Functional Annotation ^b
TNFSF14 rs1077667 19		19	6668972	0.81	-3.89	intronic, TFBS / DNase1 peak, correlates with serum levels of TNFSF14
	rs2291668 ^c	19	6669934	0.10	-9.78	intronic / synonymous, TFBS/DNAase1 peak
IL2RA	rs2104286	10	6099045	0.99	-0.47	intronic, correlates with soluble IL-2RA levels
TNFRSF1A	rs1800693	12	6440009	0.70	2.53	intronic, causes splicing defect and truncated soluble TNFRSF1A
	rs4149580°	12	6446990	0.10	2.06	intronic
IL12A	rs1014486	3	159691112	0.79	0.24	-
CD6	rs34383631	11	60793330	0.32	1.66	-
	rs4939490°	11	60793651	0.23	-0.53	-
	rs4939491°	11	60793722	0.23	-0.37	-
	rs4939489	11	60793648	0.16	3.25	-
TNFAIP3	rs632574	6	137959118	0.27	-1.15	-
	rs498549°	6	137984935	0.20	0.52	-
	rs651973	6	137996134	0.17	2.41	downstream of RP11-95M15.1 lincRNA gene
	rs536331	6	137993049	0.15	0.19	upstream of RP11-95M15.1 lincRNA gene
CD58	rs6677309	1	117080166	0.21	-1.18	intronic, TFBS/DNase1 peak
	rs35275493°	1	117095502	0.24	0.75	intronic (insertion)
	rs10754324 ^c	1	117093035	0.22	0.32	intronic
	rs1335532	1	117100957	0.17	-1.32	intronic
STAT4	rs9967792	2	191974435	0.35	-3.96	intronic
	rs10197066 ^c	2	191985459	0.21	0.05	intronic
	rs10804037	2	191991891	0.21	-0.36	intronic
	rs71301540°	2	192001443	0.20	0.08	intronic (deletion)

Table 3 The 22 variants from the 8 regions with consistent high resolution fine-mapping

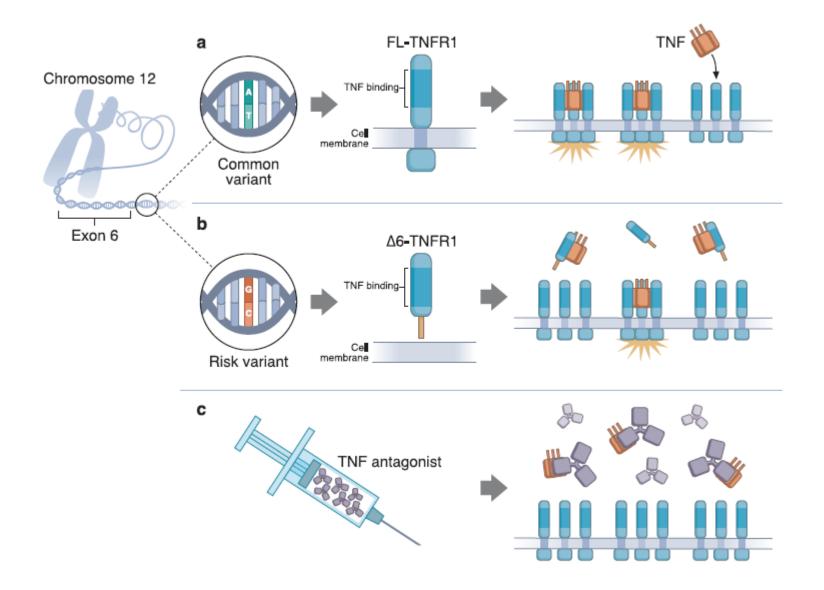
All listed variants have posterior ≥ 0.1 in regions where ≤ 5 variants explain the top 50% of the posterior and the top SNP from the frequentist analysis lives in the 90% confidence interval, ordered by maximum posterior.

Posterior denotes the posterior probability of any variant driving association. GERP denotes Genomic Evolutionary Rate Profiling.

^aPosition is based on human genome 19 and dbSNP 137.


^bFunctional data from VEP, eQTL browser, Fairfax et al. (2012), pubmed searches, 1000G. Dash indicates intergenic with no additional annotation.

Variants without annotation are intergenic and have no reported regulatory consequence.


^cImputed variant.

TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis

Adam P. Gregory¹*, Calliope A. Dendrou²*, Kathrine E. Attfield², Aiden Haghikia^{2,3}, Dionysia K. Xifara⁴, Falk Butter⁵, Gereon Poschmann⁶, Gurman Kaur¹, Lydia Lambert², Oliver A. Leach², Simone Prömel², Divya Punwani¹, James H. Felce¹, Simon J. Davis¹, Ralf Gold³, Finn C. Nielsen⁷, Richard M. Siegel⁸, Matthias Mann⁵, John I. Bell⁹, Gil McVean⁴ & Lars Fugger^{1,2,10}

Gregory et al. (2012) Nature.

Fugger et al. (2012)

2. Greater ability to validate therapeutic targets

- Epidemiological evidence shows that people with lower levels of a particular enzyme (Lp-PLA2) have reduced risk of heart disease.
- GSK developed a drug, darapladib, which inhibits Lp-PLA2
- Common variants around the gene PLA2G7 are modestly associated with Lp-PLA2 levels

...but not with heart disease

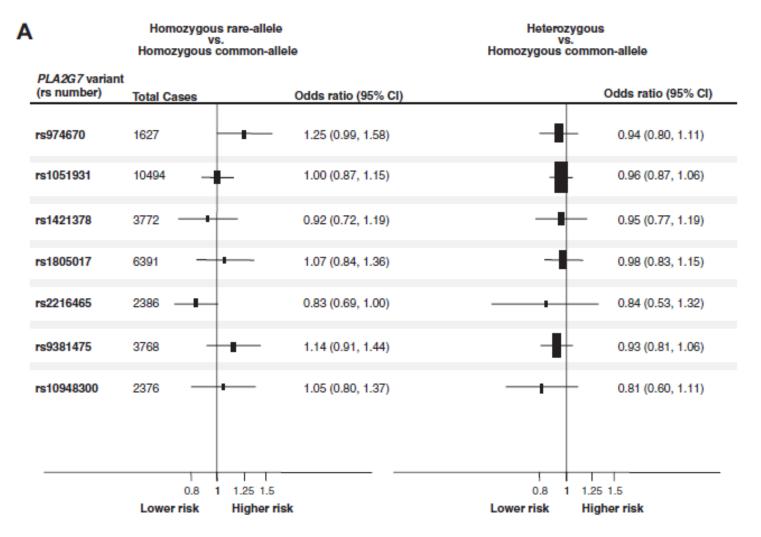


Figure 5. A, Relative odds of CHD associated with PLA2G7 variants. Data are pooled from up to 10 studies (NPHS-II, EPIC-Norfolk, WH-II, HIFMECH, EAS, AtheroGene, LURIC, Cyprus, SAS, and WTCCC-CHD) including up to 10 494 CHD events. B, Effect of the

Casas et al. Circulation 2010

LOF variant in PLA2G7 creates "Lp-PLA2 human knockouts" but is still not associated with risk of CVD

Fig. 2 Results of association between the V279F polymorphism in PLA2 gene and coronary heart disease under the additive model

	paitent Control Odds Ratio			Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Yoshiji YO	160	908	164	1204	18.5%	1.36 [1.07, 1.72]	1998	•
Yoshiji Y	366	1700	557	3368	20.2%	1.38 [1.20, 1.60]	2000	. •
Cevad Sekrir F	3	230	0	256	0.9%	7.89 [0.41, 153.61]	2006	;
Yangsoo J	109	1064	188	1340	18.2%	0.70 [0.54, 0.90]	2006	; •
Liu P-Y	66	400	69	400	15.6%	0.95 [0.65, 1.37]	2006	; +
Zhang HP	30	248	10	206	8.6%	2.70 [1.29, 5.66]	2006	5 –
Liping H	134	2630	102	1828	18.0%	0.91 [0.70, 1.18]	2009	• •
Total (95% CI)		7180		8602	100.0%	1.14 [0.86, 1.52]		•
Total events	868		1090					
Heterogeneity: Tau ² =	= 0.10; Ch	i ² = 33.	83, df = 6	(P < 0.	.00001); P	²= 82%		
Test for overall effect	Z=0.94	(P = 0.3	35)					0.01 0.1 1 10 100 Favours experimental Favours control

Zheng et al. (2011)

- GSK have recently completed "STABILITY" a large clinical trial (c. \$800M) of darapladib.
- On Tuesday, November 12, 2013, GSK announced that the drug had failed to meet Phase III endpoints in a trial of 16,000 patients with acute coronary syndrome. An additional trial of 13,000 patients (SOLID-TIMI 52) is ongoing.

What does genetics tell us to date about MS treatments?

Compound	Drugs	Mode of action	Relevantgenes	Otheruses	Comments	eQTLs	GWAS
Teriflunomide	Aubagio	Blocks dihydroorotate dehydrogenase. In i hibts pyri midine de novo synthesis, hence ra pi dly divi ding cells including activated T cells. Also blocks NF-kB and tyrosine kinases at high dose		r I na ctive form (Ie flunomide) used i n s e vere RA a nd psoriatic arthritis (also pyri mi dine synthesis i nhibitor)	Poor efficacy	None	None
Interferon beta- 1a	Avonex, Rebif, CinnoVex	Is an interferon type I. Binds to IFN-alpha receptor (IFNAR1/IFNAR2). Cytokine (activate NK cells, macrophages, upregulate antigen presentation). Produced by leukocytes	IFNAR1, IFNAR2 (activate JAK/STAT, Tyk2, etc.). IFN-beta actually 3 products from 3 genes, IFNB1, IFNB3 and IL6 (also called IFNB2). IL6 secreted by CD4 Th cells		unresponsive	s IFNB1 - no eQTLs reported. IL6 - LPS stimulation specificeQTLs	None
Interferon beta- 1b	Betaferon, Extavia	See a bove	See a bove	See a bove	See above	See a bove	See a bove
Glatiramer acetate	Copaxone	Random polymer of 4 AA found in MBP	MBP	Dry ARMD (Phase 1)	Doesn't seem to be effective	NA	NA
Fingolimod	Gilenya	Sphingosine 1-phosphate receptor modulator, which sequesters lymphocytes in lymph nodes, preventing them from contributing to an autoimmune reaction	S1PR1/EDG1	Candidate for heart failure and arrythmia	Effective treatment	None reported	None
Alemtuzumab	Le mtra da	Monocloncal that binds to CD52 on mature lymphocytes	CD52 (indirect)	Used for CLL	Veryserious side effects. Efficacy questioned.	NA	NA
Dimethyl fumarate	Te cfi dera	Atta ched by glutathione, which leads to HO 1 induction (anti-inflammatory). Possible up-regulation of NRF2. HO-1 upregulate IL10 and IL-1R	-HMOX1 encode HO-1. IL10, IL1R1, IL1R2	Ps oriasis, sarcoidosis, others	Effective treatment	HMOX1 - none reported. IL10 - rs 3024490 and rs 1554286. None reported for IL1 or receptors.	
Na ta lizu mab	Tysabri	Monocloncal against a4-integrin	ITGA4 (CD49D)		Low risk of PML caused by reactivation of JC virus	ITGA4 has both eQTLs and	None

..at best, confusing

Big data, big challenges

• Biomedical big data needs many components:

- High throughput measurement
- Large cohorts
- Ease of data access
- Powerful analysis
- Appropriate governance
- Engagement with patients
- ...
- Medical data has many complexities, but genetics provides a useful instrument to help disentangle causal and indirect associations.
- Much to do to integrate genetic and functional data across many diseases, tissues, cell-types, stimulations, etc.

With thanks to

- The WGS500 project team
- The IMSGC
- Lars Fugger and his group
- UK Biobank
- Members of the WTCHG