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ATHOUSAND GENOMES

Pilot studies prepare the way for population -scale gene sequencing mers#ses s

THE TIMES | Wednesday August 3 2011

How a DNA
first for girl,
4, changed a
family’s world

A child with a skull
abnormality has blazed
a trail by having her
entire genetic code read,
Mark Henderson writes

A four-year-old girl has become the
first person in Britain to have her entire
genetic code read to identify the cause
of a diﬁx‘:se, in a A develop-
ment that illustrates personal
genetics is ing healthcare.

Katie Warner, from Saffron Walden,
Essex, and her parents John and Maria
had their genomes sequenced by scien-
tists at the University of Oxford to pin-

diagnosis has been difficult. We might
now have a label that makes every-
thing crystal clear. Katie's definitely
behind, there are no two ways about it.
But we've had problems getting her
statemented for school. We know that
her condition is going to affect her
Ieamm&lan we can do sor
t mmedmely it's mms m
we have with educa-

wﬂmﬁs much easier. Starting
Gisduint
a
Several children been diag-
nosed by genome sequencmg in the
US, including one who, as a result, was
successfully treated for a bowel disor-
der with a bone marrow transplant. Ka-
tie is the first child in Britain to benefit.
tie has a condition called craniosy-
notosis, which causes sections of her
skull to fuse early so there is insuffi-
cient room for her brain to grow. She
two operations to relieve
pressure on her hrla‘hrs‘ ﬁﬁm
was just seven months ol
cause was tKMcuh

ik ey

‘Andrew wum, a eonsuhxnt dmnml
genetnm at the University of Oxford

alises in craniofacial disor-
dem Professor Wilkie is involved in an
Oxford research project supported by
Illumina,a DNA sequencing company,
which is sequencing 500 genomes of
people with serious diseases and their
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e large, population-scale data sets typically made possible by innovationsin

high throughput technology

— Genome sequencing

e Datasets that are large, high dimensional, semi-structured and highly

Mobile and internet technology
Imaging and automated image processing

heterogeneous

Large, requires distributed and cloud computing

Cannot be stored in standard database structures

Hard to summarise / visualise

Collected in many different ways by many different agents
Requiring new statistical and computational methods to analyse



Medical big data sources

medical
records
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Population-scale medical cohorts with genomic data
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The Oxford Big Data Institute
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Improving the health of future generations



Big data and epidemiology
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Enhanced phenotyping

* Web-based diet questionnaires on 300,000
— cognitive assessments planned

* Repeat assessments on 20,000

— further repeat every few years
e Wrist-worn accelerometers on 100,000
e Standard panel of laboratory assays + genotyping on 500,000
e [magingvisitin 100,000
— toinclude whole body and brain MRI, carotid ultrasound, bone (DEXA)

e On-goinglinkage to additional data sources
— hospital, primary care, disease register

— environment

biobank’

Improving the health of future generations



The value of large numbers: Ischaemic heart disease and

systolic blood pressure
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L. Age at risk:
256 256l Age at risk: 256k 80.89
80-89
128r 128 128- 20-79
Age at risk: 70-79
= 641 T so.e0 64 r 64 50-69
- I I  60-69 i
o lJyi| 70-79 /ﬁ
o 16l | | I /|| 60-69 16| 5059 4o |
o — 40-49
L]
m - -
o 8 11 50-59 8 a049 O
g ///// /
T 4 -j:z_/_// 40-49 4 t // 4
27 2 2 t
1 1 1
l T A I | IR T BN R | T T B
120 140 160 180 120 140 160 180 120 140 160 180
Usual SBP (mmHg) Usual SBP (mmHg) Usual SBP (mmHg)

Courtesy of Prospective Studies Collaboration, unpublished



The promise of biomedical big data

e Better diagnosis

e Better treatment choice

e |Improved target discovery

* |mproved target validation

e Better outcomes



Big Data

*T TAINK Nou SHouw &c MORE
EXPLICT HEZE N STEP TWO,"



Putting genomics at the heart of Big Data

Genetics has a direct and unequivocal relationship to phenotype
— Germ-line gives exposure from birth
— Finding the gene immediately informs about the patient

Genomic datais accurate and easy to collect on a population scale
— SNP genotype data -> GWAS on 100,000s
— Sequencing at a population scale

Genomic data can be used to probe causal relationships between biomarkers
and disease

— Natural variation mimics pharmaceutical interventions

Genomic data provides a fingerprint for monitoring infectious disease control
programmes

— Can established transmission networks at micro and macro scale



Big data in the clinic
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The value of whole genome sequencing

e Whole-genome sequence is the only data type that can detect all types of
information relevant to pathology in a single go:
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WGS500 — initiated in 2011

™ CO | | a bo ratlo N The Wellcome Trust Centre for Human Genetics [§#444 bmasener | |
umina

]
Oxford Biomedical Research Centre Oxford University Hospitals /75

MNHS Trust

e Sequence 500 genomes at 30x

e Diverse set of diseases (>40 phenotypes)
— Mendelian disorders (without mutation in screened genes)
— Sporadic (extreme) immune phenotypes
— Cancers

e Diverse set of experimental designs
— Familial: Linkage information, trios, quartets
— Cancer: Tumour-normal, metastases, multiple-mets, ..

e Substantial follow-up (screening and functional) to establish candidacy
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What is big data about this study?



1. Infrastructure
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2. Standards for data exchange and alignment

Lane QC stutistics ond ploes
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AW_SPS_0008 Chromosome 8

WGS500 Project Report on 5PS June 2012

1. Disease: Spermatocytic Seminoma

Pl: Andrew Wilkie (awilkie@hammer.ox.ac.uk)

Analysts: Anne Goriely (anne.goriely@imm.ox.ac.uk) and Eleni Giannoulatou

Last update: 02/03/2012

2. Experimental design and Strategy for identifying candidates

Spermatocytic seminoma (SPS) is a rare germ cell tumour that is slow growing and occurs
specifically during adulthood in older males. We originally sequenced 9 samples, including 5
frozen tumour samples (SPS1, SPS6, SPS8) (one of them being a bilateral case (SPS3, SPS4))
and their 4 matched controls (2 from blood genomic DNA (SPS2, SPS5) and 2 from DNA
extracted from normal tissue adjacent to the tumours (SPS7, SP59)). However, it was noted
that one of the presumed ‘bilateral’ sample SP$3 had many more discordant calls than its
SPS4 counterpart, suggesting a sampling mismatched. Typing of a few SNPs for SPS3 suggest
that the sampling error ariginate upstream of the WGS process. As a result, the ‘trio” has
been re-genotyped as a pair (SPS4/5PS5) and SPS3 is therefore an unmatched sample.



3. Use of heterogeneous external data
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What did we find?

12,695,284 A>G
FRMPD4 intron 4
paternal allele

e Sequenced child and both parents

e De novo mutationin HUWE1, a known
mental retardation gene

53,674,333 C>T
HUWET p.R110Q
paternal allele
63,047,985 T=A
intergenic

e Skewed inactivation on the X chromosome oo e
towards chromosome with mutation rEses ooT

e Multiple additional de novo mutations

e No other HUWE1 cases in >100 additional
cases screened 130,480,050 A-G

IG5F1 intron B
paternal allele
133,371,337 G=C
CCDC160 S’UTR
134,905,032 T=C
intergenic
paternal allele



Over 25% of cases with clear diagnosis
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Other relativ
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Candidatesi
Many candic
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Congenital dyserythropoetic anaemia, type 1
Cerebellar Ataxia
Erythrocytosis
Ohtahara Syndrome and other early-onset epilepsies w
Mental Retardation w
Familial tubulo-interstitial nephropathy
Craniosynostosis v
Saethre-Chotzen (TWIST negative) v
Congenital Myasthenic Syndrome
Multiple Adenoma
Beta-Thalassaemia
Learning disability, hypocalcaemia, spasticity
Tuberculosis
Asplenia
Dystonia
Haemachromatosis
Acquired Essential Thrombocytosis w
Left-ventricular Non-Compaction
Lipodystrophy
Idiopathic Hypercalciuria
Familial Hypoparathyroidism
Multiple sclerosis
Familial juvenile hyperuricaemic nephropathy 4
Systemic lupus erythematosus
Hypertrophic Cardiomyopathy (sarcomere-gene negative)
Common variable immunodeficiency
Interstitial Nephritis
Familial juvenile hyperuricaemic nephropathy 3
Repolarisation Abnormalities (RTA) (also called undiagnosed ST depression on ECG)
Dilated Cardiomyopathy
Variable cardiomyopathy/long QT syndrome
Long QT syndrome/hypertropic cardiomyopathy
Inflammatory bowel syndrome/colitis
Long QT/Romano-Ward syndrome
Familial Cardiomyopathy with mixed features of hypertropic and dilated cardiomyopathy

. Pathogenic
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What limits success?



1. Ability to predict biological consequence

Protein-protein
Known disease genes interactions and related Same pathway
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Do 40% of males have mental retardation?

Rare hemizygous coding variants at conserved positions
in known 71 X-linked Mental Retardation genes

o _ 59
O
o
uwy
E MR 6
2 Q- MR _8
2
=
5 R 27
o
0
£ o _
> ~
c
12
(= T
© = T T T
0 1 2

Number of variants



2. Sample size: The Genomics England 100k project

e 100,000genomes sequenced in rare disease and cancer by 2017

e Linkage to medical records

& 9



Global Alliance for Genomics and Health
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What will large data sets deliver?




1. A (growing) understanding of complex disease mechanisms
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What have we |learned?

About 113 current risk loci
for multiple sclerosis

Explains c. 30% sibling
recurrence risk (10% of that
is HLA)

C. 30% of loci overlap with
other autoimmune diseases

12

10

uc

AITD

cD

PS RhA CeD PBC IBD



Can we map causal variants from GWAS?

ARTICLES
gnmetics

Bayesian refinement of association signals for 14 loci
in 3 common diseases
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About 5% of signals fine-map to <5 variants

A ® 90% ®© 50% ® overlap
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Occasional success at fine-mapping
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But there is little indication of function....

Table 3 The 22 variants from the 8 regions with consistent high resolution fine-mapping

Gene SNP Chr Position? Posterior GERP Functional Annotation®
TNFSF14 rs1077667 19 6668972 0.81 -3.89 intronic, TFBS / DNasel peak, correlates with serum levels of TNFSF14
rs2291668° 19 6669934 0.10 -9.78 intronic / synonymous, TFBS/DNAasel peak
IL2RA rs2104286 10 6099045 0.99 -0.47 intronic, correlates with soluble IL-2RA levels
TNFRSF1A rs1800693 12 6440009 0.70 2.53 intronic, causes splicing defect and truncated soluble TNFRSF1A
rs4149580° 12 6446990 0.10 2.06 intronic
IL12A rs1014486 3 159691112 0.79 0.24 -
CD6 rs34383631 11 60793330 0.32 1.66 -
rs4939490° 11 60793651 0.23 -0.53 -
rs4939491° 11 60793722 0.23 -0.37 -
rs4939489 11 60793648 0.16 3.25 -
TNFAIP3 rs632574 6 137959118 0.27 -1.15 -
rs498549¢ 6 137984935 0.20 0.52 -
rs651973 6 137996134 0.17 241 downstream of RP11-95M 15.1 lincRNA gene
rs536331 6 137993049 0.15 0.19 upstream of RP11-95M 15.1 lincRNA gene
CD58 rs6677309 1 117080166 0.21 -1.18 intronic, TFBS / DNasel peak
rs35275493¢ 1 117095502 0.24 0.75 intronic (insertion)
rs10754324¢ 1 117093035 0.22 0.32 intronic
rs1335532 1 117100957 0.17 -1.32 intronic
STAT4 rs9967792 2 191974435 0.35 -3.96 intronic
rs10197066¢ 2 191985459 0.21 0.05 intronic
rs10804037 2 191991891 0.21 -0.36 intronic
rs71301540¢ 2 192001443 0.20 0.08 intronic (deletion)

All listed variants have posterior>0.1 in regions where < 5 variants explain the top 50% of the posterior and the top SNP from the frequentist analysis lives in the 90% confidence
interval, ordered by maximum posterior.

Posterior denotes the posterior probability of any variant driving association. GERP denotes Genomic Evolutionary Rate Profiling.

@Position is based on human genome 19 and dbSNP 137.

bFunctional data from VEP, eQTL browser, Fairfax et al. (2012), pubmed searches, 1000G. Dash indicates intergenic with no additional annotation.

Variants without annotation are intergenic and have no reported regulatory consequence.

¢Imputed variant.



LETTER

doi:10.1038/nature11307

TNF receptor 1 genetic risk mirrors outcome of
anti-TNF therapy in multiple sclerosis

Adam P. Gregory'™, Calliope A. Dendrou™, Kathrine E. Attfield®, Aiden Haghikia®?, Dionysia K. Xifara®, Falk Butter’,
Gereon Poschmann®, Gurman Kaur', Lydia Lambert®, Oliver A. Leach’, Simone Prémel”, Divya Punwani', James H. Felce',
Simon J. Davis', Ralf Gold®, Finn C. Nielsen’, Richard M. Siegel®, Matthias Mann®, John 1. Bell®, Gil McVean* & Lars Fugger'>1°
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2. Greater ability to validate therapeutic targets




A case study: Darapladib

e Epidemiological evidence shows that people with lower levels of a
particular enzyme (Lp-PLA2) have reduced risk of heart disease.

e GSK developed a drug, darapladib, which inhibits Lp-PLA2

e Common variants around the gene PLA2G7 are modestly associated with
Lp-PLA2 levels



...but not with heart disease

A Homozygous rare-allele Heterozygous
VS, VS,
Homozygous common-allele Homozygous common-allele
PLAZG 7 variant
(rs number) Total Casos Odds ratio (95% CI) Odds ratio (95% CI)
rs9T4670 16827 — 1.25 (0.89, 1.58) 0.94 (0.B0, 1.11)
ra1051934 10404 —J— 1.00 {0.87,1.15) 0.96 (0.87, 1.086)
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Figure 5. A, Relative odds of CHD associated with PLAZG7 variants. Data are pooled from up to 10 studies (MPHS-II, EPIC-Norfallk,
WH-II, HIFMECH, EAS, AtheroGene, LURIC, Cyprus, SAS, and WTCGCC-CHD) including up to 10 494 CHD events. B, Effect of the

Casas et al. Circulation 2010



LOF variant in PLA2G7 creates “Lp-PLA2 human knockouts”

but is still not associated with risk of CVD

Fig. 2 Results of association paitent Control Odds Ratio Odds Ratio
between the V279F Study or Subgroup  Events Total Events Total Weight IV, Random, 95% Cl Year IV, Random, 95% Cl
polymorphism in PLA2 gene Yoshiji YO 160 908 164 1204 185%  1.36(1.07,1.72] 1998 =
and coronary heart disease Yoshiji Y 366 1700 557 3368 202%  1.38(1.20,1.60) 2000 -~
under the additive model Cevad Sekrir F 3 230 0 256 09% 7.89(0.41,153.61] 2006 ’
YangsooJ 109 1064 188 1340 182%  0.70[0.54,090] 2006 b
Liu P-Y 66 400 69 400 156%  0.95[0.65, 1.37] 2006 g i
Zhang HP 30 248 10 206 86%  2.70[1.29,5.66] 2006 e
Liping H 134 2630 102 1828 18.0%  091(0.70,1.18) 2009 i
Total (95% CI) 7180 8602 100.0%  1.14[0.86, 1.52) ¥
Total events 868 1090

Heterogeneity: Tau®= 0.10; Chi*= 33.83, df= 6 (P < 0.00001); F=82%

Test for overall effect Z=0.94 (P =0.35) sl : 1 1.

Favours experimental Favours control

Zheng et al. (2011)



An unhappy ending

GSK have recently completed “STABILITY” a large clinical trial (c. S800M) of
darapladib.

On Tuesday, November 12, 2013, GSKannounced that the drug had failed
to meet Phase lll endpointsin a trial of 16,000 patients with acute coronary
syndrome. An additional trial of 13,000 patients (SOLID-TIMI52) is
ongoing.



What does genetics tell us to date about MS treatments?

Compound  Drugs Mode of action Relevantgenes Otheruses Comments eQTLs GWAS
Teriflunomide  Aubagio Blocks dihydroorotate dehydrogenase. DHODH (mutations cause MillerInactive form Poorefficacy None None

Inihibts pyrimidine de novo synthesis, hence syndrome) (leflunomide)usedin

rapidlydividing cells including activated T severe RAand

cells. Alsoblocks NF-kBand tyrosine kinases psoriatic arthritis (also

athighdose pyrimidine synthesis

inhibitor)

Interferonbeta- Avonex, Rebif, Is aninterferontypel. Bindsto IFN-alpha IFNAR1, IFNAR2 (activate Chemotherapy 30% MS patientsIFNB1-no eQTLs None
la CinnoVex receptor (IFNAR1/IFNAR2). Cytokine JAK/STAT, Tyk2, etc.). IFN-beta unresponsive reported. IL6-

(activate NK cells, macrophages, upregulate actually3 products from 3 LPS stimulation

antigen presentation). Produced by genes, IFNB1, IFNB3andIL6 specificeQTLs

leukocytes (alsocalled IFNB2). IL6 secreted

by CD4 Th cells

Interferonbeta- Betaferon, Extavia See above See above See above See above See above See above
1b
Glatiramer Copaxone Random polymerof 4 AAfoundin MBP MBP Dry ARMD (Phase1l) Doesn'tseemtoNA NA
acetate be effective
Fingolimod Gilenya Sphingosine 1-phosphate receptor S1PR1/EDG1 Candidateforheart Effective None reported None

modulator, which sequesters lymphocytes failureandarrythmia treatment

inlymphnodes, preventing themfrom
contributing to an autoimmune reaction

Alemtuzumab Lemtrada Monocloncal that binds to CD52 on mature CD52 (indirect) Used for CLL Veryserious NA NA
lymphocytes side effects.
Efficacy
questioned.
Dimethyl Tecfidera Attached by glutathione, which leads to HO-HMOX1 encode HO-1. IL10, Psoriasis, sarcoidosis, Effective HMOX1 -none None. Though!L20
fumarate 1 induction (anti-inflammatory). Possible IL1R1,IL1R2 others treatment reported. IL10- is structurally
up-regulation of NRF2. HO-1 upregulate rs3024490and relatedto IL10and
IL10and IL-1R rs1554286. None is a MS GWAS
reportedforILl signal. Notells
orreceptors. strongly clustered.
Natalizumab Tysabri Monocloncal against a4-integrin ITGA4 (CD49D) Low risk of PML ITGA4hasboth None
caused by eQTLs and
reactivationof multiple exon
JCvirus QTLs reported

..at best, confusing



Big data, big challenges

Biomedical big data needs many components:
— High throughput measurement

— Large cohorts

— Ease of data access

— Powerful analysis

— Appropriate governance

— Engagement with patients

Medical data has many complexities, but genetics provides a useful
instrument to help disentangle causal and indirect associations.

Much to do to integrate genetic and functional data across many diseases,
tissues, cell-types, stimulations, etc.
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