

The atmospheric boundary layer and its impact on the general circulation

Gunilla Svensson

Department of Meteorology, Bolin Centre for Climate Research and Swedish e-Science Research Centre

Affiliate scientist at National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA

Jenny Lindvall, Rodrigo Caballero, Isla Simpson, Julio Bachmeister

Planetary boundary layer PBL

- Depth varies between O(m) and O(km)
- Always turbulent
- Characteristics, diurnal cycles and strong vertical gradients

Climate system

IPCC, 2013

Climate system

Stockholm University

IPCC, 2013

	1	AOGCM				ESM				
Model name		Atmos	Land Surface	Ocean	Sea-Ice	FC	Aerosol	Atmos Chem	Land Carbon	Ocean BGC
ACCESS1.0, ACCESS1.3	Australia					1				
BCC-CSM1.1, BCC-CSM1.1(m)	China					11				
BNU-ESM	China									
CanCM4	Canada									
CanESM2	Canada									
CCSM4										
CESM1 (BGC)										
CESM1 (WACCM)	USA	HT			i R				1	
CESM1 (FASTCHEM)						11				
CESM1 (CAM5)								1	1	
CESM1 (CAM5.1-FV2)	USA				1	11	1			
CMCC-CM, CMCC-CMS	Italy	HT								
CMCC-CESM		HT								
CNRM-CM5	France					1				
CSIRO-Mk3.6.0	Australia						· · · · · · · · · · · · · · · · · · ·		1	
EC-EARTH	Europe									
FGOALS-g2	China					11				
FGOALS-s2						1				
FIO-ESM v1.0	China					11				
GFDL-ESM2M, GFDL-ESM2G					1	11	1			
GFDL-CM2.1	USA									
GFDL-CM3		HT								
GISS-E2-R, GISS-E2-H	USA	HT			1	10	p2,p3*	p2, p3*		
GISS-E2-R-CC, GISS-E2-H-CC		HT					p2,p3*	p2, p3*		
HadGEM2-ES							1			20
HadGEM2-CC	UK	HT				11				Ir
HadCM3						1			-	(t
HadGEM2-AO	Korea				1					
INM-CM4	Russia									
IPSL-CM5A-LR / -CM5A-MR / -CM5B-LR	France	HT			6					
MIROC4h, MIROC5		HT			1	1	1.1			
MIROC-ESM	Japan	HT				10				
MIROC-ESM-CHEM		HT				11				
MPI-ESM-LR / -ESM-MR / -ESM-P	Germany	HT	1		2				1	
MRI-ESM1	Japan	HT	1		11		1			
MRI-CGCM3		HT			7	11			-	
NCEP-CFSv2	USA		-		15	11				
NorESM1-M	ALCONDUCT OF		1		2	11	-			
NorESM1-ME	Norway		8		1	11	1			

Coupled Model Intercomparison Project Phase 5 (2010 – 2011) CMIP5 data federated archive: >3 PB

Phase 6 (2016 - 2020) CMIP6: **>150 PB**

Increasing resolution Atmosphere / Ocean (total number of horizonal grid points)

Increasing complexity

CMIP5

CMIP5 model evaluation T_{2m} (1980-2001)

Stockholm University

ERA-Interim

Multi-model mean of absolute error Mean reanalysis inconsistency

ERA-Interim ERA-40 JRA-25

Evaluation of CMIP5 models

Carbon flux network, 26 sites used here Long-term surface flux observations

(Svensson and Lindvall 2015)

⁽Svensson and Lindvall 2015)

⁽Svensson and Lindvall 2015)

PBL winds

Above the PBL

In the PBL

PBL winds are ageostrophic Cross-isobaric angle

What determines the cross-isobaric angle (α) and the magnitude $\tau = \sqrt{(\tau_x^2 + \tau_y^2)}$ of the friction?

PBL in climate & NWP models parameterizations: turbulence models

The boundary-layer surface stress vector is provided by similarity theory (e.g. Monin-Obukhov theory), assuming a constant flux layer, relating the gradients from the lowest model level to the surface fluxes, corrected by stability functions using stability parameter Monin-Obukhov lenght (z/L) or Richardson gradient number

Stability functions are determined from carefully designed experimental campaigns

Lack of global wind observations to constrain models:

- over ocean scatterometer observations provide estimates of the near surface wind
- over land at midlatitudes, reanalysis constrained by radiosoundings using geostrophic (mass – flow) balance

(Cuxart et al.2006; Beare et al. 2006; Svensson and Holtslag 2009)

Satellite observations of wind 10-m wind speed (m s⁻¹)

Adapted from Duxbury , Alyn C. and Alison B. Duxbury . *An Introduction to the World's Oceans*, #/e. Copyright © 1994 Wm. C. Brown Publishers, Dubuque, Iowa.

High pressure Descending air

Idealized global experiments

In idealized AGCMs, surface jet strength and latitude are highly sensitive to surface drag, via feedback on baroclinic eddies

Chen et al., 2007

ARM Southern Great Plains site

ARM Southern Great Plains site

Six years of measurements Radiosondes are released four times daily

PBL depth estimation

- Diagnosed using a bulk Richardson number (finding first level where Ri_{bulk} > 0.25 or 0.30)
- When possible, use friction velocity to improve the estimate following Vogelezang and Holtslag (1996)
- For a fair comparison, the same method is used to calculate the PBL depth in the models and observations

Evaluation of CMIP5 models ARM Southern Great Plane

PBL height (m) overestimated by the models

(Svensson and Lindvall 2015)

NWP models

Tricks to improve circulation in weather forecasts

Long-tail functions - enhanced mixing in stably stratified conditions

- Increase PBL depth
- Increased heat fluxes
- Biases include too strong surface winds and warm bias
- Mixes out gradients e.g. Low-level jets are damped

Rotating the surface stress angle – results in more ageostrophic flow in the PBL

- Magnitude of stress is not changed
- Heat fluxes not changed
- Not consistent with constant flux layer theory

In addition, enhanced surface roughness is often used to account for sub-grid orography (or an alternative parameterization is used)

These methods improve the weather forecast but not necessarily the PBL structure!

Global forecast model Stability functions affect the large scale forecast scores

ECMWF IFS Courtesy A. Beljaars

Experiments in CAM5.3 10-year AMIP-type experiments

1 degree resolution & 30 vertical layers

PBL scheme: Bretherton and Park, (2009)

Land model use long-tail functions

Default CAM5 (**CONTROL**) No atmospheric turbulence when Ri > 0.19

(Lindvall, Svensson and Caballero, 2016)

Zonal anomaly of the 500hPa streamfunction

-15 -10 -5 0 5 10 15 $[10^6 \text{ m}^2 \text{ s}^{-1}]$

(Lindvall, Svensson and Caballero, 2016)

Atmospheric blockings 00:00 UTC, November 19, 2014

Quasi-stationary highs that persist for more than ~5 days

Increase in the meridional energy transport

f.int Anomalies in temperature and precipitation

What will happen with these in a warmer climate?

metoffice.gov.uk

Atmospheric blocking frequency Stockholm 20 University All model CTRL ANN Blocking frequency [%] NoTMS versions have 15 Longtail too few MERRA blockings, 10 ERA specially for 5 the Euro-Atlantic sector 0 120 E 60E 180E 270E 60W 0

Pacific sector

Euro-Atlantic sector

Lindvall, Svensson and Caballero, 2016

Atmospheric blocking frequency Stockholm University 20 CTRL ANN Blocking frequency [%] NoTMS 15 Longtail Control is closer MERRA to observations No version 10 ERA than both captures the NoTMS and Atlantic 5 Longtail in blockings in winter spring 60E 120 E 180E 270E 60W 0 20 MAM DJF 3locking frequency [%] 15 10 5 60E 120 E 180E 60E 60W 270E 60W 120 E 180E 270E Longitude Longitude

CONTROL – With TMS (subgrid scale turbulent orographic drag)NoTMS - Without TMS (no subgrid scale turbulent orographic drag)Lindvall, Svensson and Caballero,LONGTAIL - Higher diffusivity in stably stratitified conditions + no turbulent orographic drag2016

Observations

IGRA

- Soundings at over 1000 locations (681 included)
- Limited vertical resolution
- PBLH from Seidel et al, 2010 (1971-2010)

SPARC

- High vertical resolution (6 or 1 s)
- Fewer points (US only)
- 1998-2011

Wind turning over PBL Annual mean

Wind turning at the SPARC sites CMIP5 models, CESM(CLUBB) and ERA-Interim 5-years of 6-hourly data

Cross-isobaric angle Era-Interim and CMIP5 models

Conclusions

Evaluation of CMIP5 models:

- Large intermodel spread in diurnal temperature range (DTR) and diurnal cycle of near-surface variables and surface fluxes
- Boundary layer depth is generally overestimated
- Vertical structure of planetary boundary layer is not represented very well; Temperature is generally better represented than winds
- Wind turning over the boundary layer, or cross-isobaric angle, is generally smaller in models and reanalysis products than observations show

CAM5 experiments:

- Large-scale circulation is very sensitive to surface drag
- Difficult to evaluate drag and near-surface wind due to lack of global datasets, cross-isobaric angel could be a useful measure