Scalable Access to Big Data

Martin Giese

Optique

The Problem of Data Access

When does this Go Wrong?

I need to find all rock samples where my Company had at least a 30% share of the licence at the time the sample was taken. I'm sure the information is there but there are so many concepts involved that I can't find it in the application.

I need all wellbores with a pore pressure of over 14ppg, but lower than 12ppg further down the hole. I can't say this to the application.

I need to find all rock samples for this oil field, including the ones in this Excel sheet from Dinoco. The application doesn't know about this data.

What then happens?

- Where is this information stored, and what is it called?
- Can you hand-craft a query for my information need?
- Can you include data from this spreadsheet in the db?

- May take weeks to respond
- Takes several years to master data stores and user needs

What then happens?

- Where is this information stored, and what is it called?
- Can you hand-craft a query for my information need?
- Can you include data from this spreadsheet in the db?

- May take **weeks** to respond
- Takes several years to master data stores and user needs

30–70% of domain expert time spent looking for and assessing the quality of the data found

The Problem of Data Access

The Problem of Data Access

The Research Council of Norwa

Data Access, with a Data Warehouse

Data Access: The Optique Solution

The Research Council of Norw

Data Access: The Optique Solution

The Research Council of Norw

Ontology-based Data Access

• Capture End-user vocabulary in an "Ontology"

- \approx Domain model
- Classes and relations known to end-users
- Some minimal domain knowledge
- Mappings that relate Ontology with data sources
 - 'Column "Type" is "T" in row *x* of table "Sensors" if sensor Nr. *x* is a Temperature Sensor'
- Automatically translate queries in End-user language to queries over data sources.

In: 'List all temperature sensors.'

Out: 'Print "Sensor Nr. *x*" for all rows *x* in "Sensors" table where "Type" column is "T."

Optique Focus Areas

Basic principles of OBDA predate Optique

Optique focussed on practical issues:

- Usability
 - How do end-users formulate queries? In first-order logic?
 - Need a user interface for 'query formulation'
- Scope
 - What about queries with time? Or geology? Or chemistry?
 - Need to extend bare-bones query rewriting
 - Plug-in architecture for special domains
- Prerequisites
 - Where do the ontology and mappings come from?
 - How do you maintain them?
- Efficiency
 - SQL databases not good at queries from OBDA
 - Big Data is maybe not best stored in an SQL database
 - Optimize rewritten queries and storage layer

Optique Architecture

Status at end of project

he Research Council of Norw

Optique is Dead Long Live...

Centre For Scalable Data Access In The Oil & Gas Industry

- Optique style Big Data Access
- Natural Language Processing
- Cloud Computing
- HPC hardware

Data Science @ University of Oslo

- Optique, SIRIUS: Data Access
- BigInsight: Data Analysis, Statistics, Machine Learning

 UiO aspires to become a leading institution in Data Science

Analytics Aware OBDA

- Analytics operations as part of query language
- Execute Aggregation and Analysis near the sources
- Novel possibilities for optimisation and distribution
 - Fog Computing
- ISWC 2016 paper: *"Towards Analytics Aware Ontology Based Access to Static and Streaming Data"* E. Kharlamov et al.

https://arxiv.org/abs/1607.05351

Semantics-based Data Cleaning

- Ontologies describe the world
- ... how the data should be
- Basis for detecting problems
 - Data inconsistent with ontology
 - Need more information to fix

- Combine with statistical model of what happened to data!
 - Clean data
 - Repair data
- Next step: Information in missing data!
 - Extend ontology, add mappings
 - Can statistical methods help to do this?

Statistical Methods for Graph Data

- Ontologies describe the world in terms of
 - Classes (types)
 - Relations (object-to-object)
 - Properties (object-to-value)
- Compared to other data:
 - Richer than vector data
 - Richer than pure graphs/networks
- In Oil & Gas
 - Description of installations
 - Stratigraphy

• .

- Combine probabilistic and ontological models:
 - Cleaning and repairing graph data
 - Machine learning, prediction on graph data

SIRIUS Center for Scalable Data Access in the Oil and Gas Domain