
Data-driven applications in
practice

2017-05-11
Lars Albertsson

www.mapflat.com

1

Who’s talking?
● KTH-PDC (MSc thesis)
● Swedish Institute of Computer Science (distributed system test+debug tools)
● Sun Microsystems (very large machines)
● Google (Hangouts, productivity)
● Recorded Future (natural language processing startup)
● Cinnober Financial Tech. (trading systems)
● Spotify (data processing & modelling)
● Schibsted Products & Tech (data processing & modelling)
● Mapflat - independent data engineering consultant

2

Most companies have
User behaviour Business insights

Many dream of

User
content

Professional
content

Ads / partners

User
behaviour

Systems Ads

System
diagnostics

Recommendations

Data-based
features

Curated
content

Pushing

Business
intelligence

Experiments

Exploration

Do Big Data things

External
sources

Presentation objective

Data & AI will affect everyone
Steam engines

Cars

Computers / digitalisation

Internet

Smartphones

AI

6

All businesses will be impacted

Relation is not optional

C.f. Kodak, Hasselblad

Data-centric systems - 1st generation
● The monolith
● All data in one place
● Analytics + online serving from

single database
● Query current state

7

DB

Presentation

Logic

Storage

Data-centric systems - 2nd gen
● Service oriented /

microservices
● Collect aggregated data from

multiple online systems to data
warehouse

● Aggregate to OLAP cubes
● Analytics focused
● Query history of aggregations

8

Service
Service

Service

Web application

Data
warehouse

Daily
aggregates

Event oriented - 3rd generation

9

Every event All events, ever,
raw, unprocessed

Refinement
pipeline

Artifact of
value

3rd generation - event oriented

10

Every event All events, ever,
raw, unprocessed

Refinement
pipeline

Artifact of
value

● Motivated by
○ New types of data-driven (AI) features, served instantly
○ Quicker product iterations

■ Data-driven product feedback (A/B tests)
■ Fewer teams involved in changes

○ Robustness - scales to more complex business logic
○ Simple / homogenic - easier to comply with (privacy, financial) regulations
○ Detailed business insights
○ Scales to ~100M entities

Enables disruption

v

Service

Data processing at scale

11

Cluster storage

Ingress Offline processing Egress

Data
lake

DB
Service

DatasetJob
Pipeline

Service

Export

Business
intelligence

DB
DB

Import

The data lake

Unified log of events + DB snapshots

● Immutable datasets
● Raw, unprocessed
● Source of truth from batch

processing perspective
● Kept as long as permitted
● Technically homogeneous

Cluster storage

12

Data lake

Cluster storage

Batch processing

Gradual refinement

1. Wash
- time shuffle, dedup, ...

2. Decorate
- geo, demographic, ...

3. Domain model
- similarity, clusters, ...

4. Application model
- Recommendations, ...

13

Data lake

Artifact of business value
E.g. service index

Job
Pipeline

Business architecture example, e-commerce

14

User
action

Merchant
action

Hourly
batches

Partner
event post

Events

Users Inventory Tag mgmt

State (DBs + import)

Refined events

Click-through Sessions Behavioural
pattern match

OLAP cubes

Aggregate

Inventory
changes

Anomaly
signals

My things
events

Window, join,
decorate

Item / item
matrices

User / item
matrices

Monthly full

Daily delta

Item -> item
suggestions

User -> item
suggestions

Approx
nearest
neighbour

Personalisation:
collaborative filter

Prepared for serving

Email
reachout

Fraud
candidates

Inventory
notification

Ranked push
candidates

Bundle
suggest User A: Item suggestion list

User A: Bundle suggestion list

Item B: Item suggestion list
Item B: Bundle suggestion list

Merchant C: Fraud suspicions

Online multiquery,
rank, select

Cluster storage

Intermediate

Derived,
regenerable

Pipelines

● Things will break
○ Input will be missing
○ Jobs will fail
○ Jobs will have bugs

● Datasets must be rebuilt
● Determinism, idempotency
● Backfill missing / failed
● Eventual correctness

15

Data lake

Pristine,
immutable
datasets

Waterfall, one team delivers to next

- Time to business value, low agility

16

Organisational dimensions
Business value driven

● Cross-functional teams with mission from
raw data to value

+ Focus on value
+ Communication between functions
- Duplication
- Cross-cutting concerns

- Technical productivity
- Privacy & compliance
- Security

- Staffing

Foundations of data teams

17

Product owner
Business developer / project manager
+ data tech & science aware
Protector of ROI

Data scientist
Analyst / statistician
+ capable programmer

Data engineer
Backend engineer
+ data wrangler

Mutual
respect!

Use case - track recommendation

18

Entities

Tr
ac

ks

2 4 1 1 5 2

0 1 7 1 0 6

5 2 9 0 3 0

3 8 0 6 0 7

Distance = cos(v1, v2)

Nearest neighbours

e1 e1782,e9823,..

e2 e3,e931,..

e3 e2,e8258,..

e4 e5243,e2802,..

... ...

~1000 neighboursEntities = Tracks / Albums / Artists / Playlists / Users

Use case - denormalise

19

e1 {0: e1782,”U2”, ...

e2 {0: e3,”Robyn”, ...

e3 {0: e2, “Röyksopp”, ...

e4 {0: e5243, “Cure”, ...

...

Requirements:
● Single dimension paging
● Read scalability
● Write scalability
● Reliability
● DC replication
● Availability over consistency

Cassandra

Credits: Ebay

Example: Spotify

● 100M active users, 1B streams / day
● 60 TB/day ingress
● 2500 nodes Hadoop, 100PB, 100TB mem
● 20K jobs / day, 2K unique
● 600K BigQuery queries = 500 PB / month
● 500 people touch data daily

● Autonomous team and tech culture
● Mature, organic data platform
+ Business-driven pipes, enabled teams
- Productivity, end-to-end agility, privacy,

stability, duplication, security

Morning
coffee

=

Anti-patterns
Enterprise edition

● Buy big Hadoop cluster
● Put all our data in a lake, wait for gold
● Army of consultants
● Assuming vendor solution is sufficient
● Disconnect business & data engineers
● We have lots of data, so we must have Big

Data Things
● Excessive security & control

Startup edition

● Departments jealously guard their data
● Build for a scale not yet experienced
● Just hack things
● Engineering variety debt
● Drown in technical debt
● Assuming cloud solution is sufficient
● Teams choose different technical paths
● No end-to-end flows / agility

21

Solved Not solved
● Scaling out to many machines
● Performance / utilisation
● Hardware failures
● Software failure (bugs), batch processing
● Machine learning at scale
● Micro development process

● Software failures, streaming
● Operations / human failures
● Scaling out to many developers
● Scaling out to complex pipelines
● Code evolution
● Macro development process
● Data quality process
● Privacy protection
● Data-driven product development
● Data discovery / lineage
● Human-in-the-loop

22

