Data-driven applications in practice

2017-05-11 Lars Albertsson www.mapflat.com

Who's talking?

• KTH-PDC (MSc thesis)

- Swedish Institute of Computer Science (distributed system test+debug tools)
- Sun Microsystems (very large machines)
- Google (Hangouts, productivity)
- Recorded Future (natural language processing startup)
- Cinnober Financial Tech. (trading systems)
- Spotify (data processing & modelling)
- Schibsted Products & Tech (data processing & modelling)
- Mapflat independent data engineering consultant

Most companies have

User behaviour

Presentation objective

Data & AI will affect everyone

Steam engines

Cars

Computers / digitalisation

Internet

Smartphones

Al

All businesses will be impacted

Relation is not optional

C.f. Kodak, Hasselblad

Data-centric systems - 1st generation

- The monolith
- All data in one place
- Analytics + online serving from single database
- Query current state

Data-centric systems - 2nd gen

- Service oriented / microservices
- Collect aggregated data from multiple online systems to *data warehouse*
- Aggregate to OLAP cubes
- Analytics focused
- Query history of aggregations

Event oriented - 3rd generation

3rd generation - event oriented

- Motivated by
 - New types of data-driven (AI) features, served instantly
 - Quicker product iterations
 - Data-driven product feedback (A/B tests)
 - Fewer teams involved in changes
 - Robustness scales to more complex business logic
 - Simple / homogenic easier to comply with (privacy, financial) regulations
 - Detailed business insights
 - Scales to ~100M entities

Enables disruption

Data processing at scale

The data lake

Unified log of events + DB snapshots

- Immutable datasets
- Raw, unprocessed
- Source of truth from batch processing perspective
- Kept as long as permitted
- Technically homogeneous

Batch processing

Gradual refinement

- 1. Wash
 - time shuffle, dedup, ...
- 2. Decorate
 - geo, demographic, ...
- 3. Domain model
 - similarity, clusters, ...
- 4. Application model
 - Recommendations, ...

Business architecture example, e-commerce

14

Pipelines

- Things will break
 - Input will be missing 0
 - Jobs will fail 0
 - Jobs will have bugs 0
- Datasets must be rebuilt
- Determinism, idempotency
- Backfill missing / failed
- **Eventual correctness**

Organisational dimensions

Waterfall, one team delivers to next

- Time to business value, low agility

Business value driven

- Cross-functional teams with mission from raw data to value
- + Focus on value
- + Communication between functions
- Duplication
- Cross-cutting concerns
 - Technical productivity
 - Privacy & compliance
 - Security
- Staffing

Foundations of data teams

Use case - track recommendation

Entities = Tracks / Albums / Artists / Playlists / Users

~1000 neighbours

Use case - denormalise

e1	{0: e1782,"U2",
e2	{0: e3,"Robyn",
e3	{0: e2, "Röyksopp",
e4	{0: e5243, "Cure",

Row key1	Column Key1 Column Key2	Column Key3 Column Key4	Column Key5 Column Key6	
	Column Value1	Column Value2	Column Value3	

Credits: Ebay

Requirements:

- Single dimension paging
- Read scalability
- Write scalability
- Reliability
- DC replication
- Availability over consistency

Cassandra

Example: Spotify

- 100M active users, 1B streams / day
- 60 TB/day ingress
- 2500 nodes Hadoop, 100PB, 100TB mem
- 20K jobs / day, 2K unique
- 600K BigQuery queries = 500 PB / month
- 500 people touch data daily
- Autonomous team and tech culture
- Mature, organic data platform
- + Business-driven pipes, enabled teams
- Productivity, end-to-end agility, privacy, stability, duplication, security

Anti-patterns

Enterprise edition

- Buy big Hadoop cluster
- Put all our data in a lake, wait for gold
- Army of consultants
- Assuming vendor solution is sufficient
- Disconnect business & data engineers
- We have lots of data, so we must have Big Data Things
- Excessive security & control

Startup edition

- Departments jealously guard their data
- Build for a scale not yet experienced
- Just hack things
- Engineering variety debt
- Drown in technical debt
- Assuming cloud solution is sufficient
- Teams choose different technical paths
- No end-to-end flows / agility

Solved

- Scaling out to many machines
- Performance / utilisation
- Hardware failures
- Software failure (bugs), batch processing
- Machine learning at scale
- Micro development process

Not solved

- Software failures, streaming
- Operations / human failures
- Scaling out to many developers
- Scaling out to complex pipelines
- Code evolution
- Macro development process
- Data quality process
- Privacy protection
- Data-driven product development
- Data discovery / lineage
- Human-in-the-loop