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Who’s talking?
● KTH-PDC (MSc thesis)
● Swedish Institute of Computer Science (distributed system test+debug tools)
● Sun Microsystems (very large machines)
● Google (Hangouts, productivity)
● Recorded Future (natural language processing startup)
● Cinnober Financial Tech. (trading systems)
● Spotify (data processing & modelling)
● Schibsted Products & Tech (data processing & modelling)
● Mapflat - independent data engineering consultant
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Most companies have
User behaviour Business insights



Many dream of
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Presentation objective



Data & AI will affect everyone
Steam engines

Cars

Computers / digitalisation

Internet

Smartphones

AI

6

All businesses will be impacted

Relation is not optional

C.f. Kodak, Hasselblad



Data-centric systems - 1st generation
● The monolith
● All data in one place
● Analytics + online serving from 

single database
● Query current state
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Data-centric systems - 2nd gen
● Service oriented / 

microservices
● Collect aggregated data from 

multiple online systems to data 
warehouse

● Aggregate to OLAP cubes
● Analytics focused
● Query history of aggregations
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Service
Service

Service

Web application

Data 
warehouse

Daily 
aggregates



Event oriented - 3rd generation
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Every event All events, ever, 
raw, unprocessed

Refinement 
pipeline

Artifact of 
value



3rd generation - event oriented
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Every event All events, ever, 
raw, unprocessed

Refinement 
pipeline

Artifact of 
value

● Motivated by
○ New types of data-driven (AI) features, served instantly
○ Quicker product iterations

■ Data-driven product feedback (A/B tests)
■ Fewer teams involved in changes

○ Robustness - scales to more complex business logic
○ Simple / homogenic - easier to comply with (privacy, financial) regulations
○ Detailed business insights
○ Scales to ~100M entities

Enables disruption



v

Service

Data processing at scale
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Cluster storage

Ingress Offline processing Egress

Data
lake

DB
Service

DatasetJob
Pipeline

Service

Export

Business
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DB
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The data lake

Unified log of events + DB snapshots

● Immutable datasets
● Raw, unprocessed
● Source of truth from batch 

processing perspective
● Kept as long as permitted
● Technically homogeneous

Cluster storage
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Data lake



Cluster storage

Batch processing

Gradual refinement

1. Wash
- time shuffle, dedup, ...

2. Decorate
- geo, demographic, ...

3. Domain model
- similarity, clusters, ...

4. Application model
- Recommendations, ...
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Data lake

Artifact of business value
E.g. service index

Job
Pipeline



Business architecture example, e-commerce
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User 
action

Merchant 
action

Hourly
batches

Partner 
event post

Events

Users Inventory Tag mgmt

State (DBs + import)

Refined events

Click-through Sessions Behavioural 
pattern match

OLAP cubes

Aggregate

Inventory 
changes

Anomaly 
signals

My things 
events

Window, join, 
decorate

Item / item 
matrices

User / item 
matrices

Monthly full

Daily delta

Item -> item 
suggestions

User -> item 
suggestions

Approx 
nearest 
neighbour

Personalisation: 
collaborative filter

Prepared for serving

Email 
reachout

Fraud 
candidates

Inventory 
notification

Ranked push 
candidates

Bundle 
suggest User A: Item suggestion list

User A: Bundle suggestion list

Item B: Item suggestion list
Item B: Bundle suggestion list

Merchant C: Fraud suspicions

Online multiquery, 
rank, select



Cluster storage

Intermediate

Derived,
regenerable

Pipelines

● Things will break
○ Input will be missing
○ Jobs will fail
○ Jobs will have bugs

● Datasets must be rebuilt
● Determinism, idempotency
● Backfill missing / failed
● Eventual correctness
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Data lake

Pristine,
immutable
datasets



Waterfall, one team delivers to next

- Time to business value, low agility
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Organisational dimensions
Business value driven

● Cross-functional teams with mission from 
raw data to value

+ Focus on value
+ Communication between functions
- Duplication
- Cross-cutting concerns

- Technical productivity
- Privacy & compliance
- Security

- Staffing



Foundations of data teams
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Product owner
Business developer / project manager
+ data tech & science aware
Protector of ROI

Data scientist
Analyst / statistician
+ capable programmer

Data engineer
Backend engineer
+ data wrangler

Mutual 
respect!



Use case - track recommendation
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Entities

Tr
ac

ks

2 4 1 1 5 2

0 1 7 1 0 6

5 2 9 0 3 0

3 8 0 6 0 7

Distance = cos(v1, v2)

Nearest neighbours

e1 e1782,e9823,..

e2 e3,e931,..

e3 e2,e8258,..

e4 e5243,e2802,..

... ...

~1000 neighboursEntities = Tracks / Albums / Artists / Playlists / Users



Use case - denormalise
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e1 {0: e1782,”U2”, ...

e2 {0: e3,”Robyn”, ...

e3 {0: e2, “Röyksopp”, ...

e4 {0: e5243, “Cure”, ...

... ....

Requirements:
● Single dimension paging
● Read scalability
● Write scalability
● Reliability
● DC replication
● Availability over consistency

Cassandra

Credits: Ebay



Example: Spotify

● 100M active users, 1B streams / day
● 60 TB/day ingress 
● 2500 nodes Hadoop, 100PB, 100TB mem
● 20K jobs / day, 2K unique
● 600K BigQuery queries = 500 PB / month
● 500 people touch data daily

● Autonomous team and tech culture
● Mature, organic data platform
+ Business-driven pipes, enabled teams
- Productivity, end-to-end agility, privacy, 

stability, duplication, security

Morning
coffee

=



Anti-patterns
Enterprise edition

● Buy big Hadoop cluster
● Put all our data in a lake, wait for gold
● Army of consultants
● Assuming vendor solution is sufficient
● Disconnect business & data engineers
● We have lots of data, so we must have Big 

Data Things
● Excessive security & control

Startup edition

● Departments jealously guard their data
● Build for a scale not yet experienced
● Just hack things
● Engineering variety debt
● Drown in technical debt
● Assuming cloud solution is sufficient
● Teams choose different technical paths
● No end-to-end flows / agility
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Solved Not solved
● Scaling out to many machines
● Performance / utilisation
● Hardware failures
● Software failure (bugs), batch processing
● Machine learning at scale
● Micro development process

● Software failures, streaming
● Operations / human failures
● Scaling out to many developers
● Scaling out to complex pipelines
● Code evolution
● Macro development process
● Data quality process
● Privacy protection
● Data-driven product development
● Data discovery / lineage
● Human-in-the-loop
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