Numerical Analysis: FEniCS-HPC

High Performance Adaptive Finite Element Methods for Turbulent Flow and Multiphysics with Applications to Aerodynamics, Aeroacoustics, Biomedicine and Geophysics.

This project concerns the development of parallel computational methods for solving turbulent fluid flow problems with focus on industrial applications, such as the aerodynamics of a full aircraft at realistic flight conditions, the sound generated by the turbulent flow past the aircraft during landing and takeoff, the blood flow inside a human heart and geophysical flows. The massive computational cost for resolving all turbulent scales in such problems makes Direct Numerical Simulation of the underlying Navier-Stokes equations impossible. Instead, various approaches based on partial resolution of the flow have been developed, such as Reynolds Averaged Navier-Stokes equations or Large-Eddy simulation (LES). For these methods new questions arise: what is the accuracy of the approximation, how fine scales have to be resolved, and what are the proper boundary conditions? To answer such questions, a number of challenges have to be addressed simultaneously in the fields of fluid mechanics, mathematics, numerical analysis and HPC.

Investigators