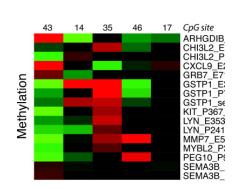
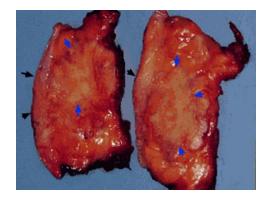
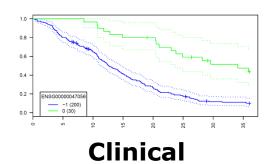
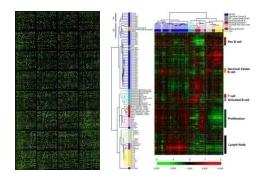

How Individual Variation and Treatment Strategies Affect Cancer Progression and Death?

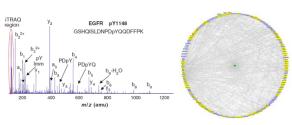

Sampsa Hautaniemi, DTech
Academy Research Fellow
Institute of Biomedicine
Genome-Scale Biology Research Program
Centre of Excellence in Cancer Genetics
Faculty of Medicine
University of Helsinki

Complex Diseases Require Data From Several Levels






Genetics


Epigenetics

Transcriptome

Proteomics

100 samples lead to ~200 million data points.

The Role of Bioinformatics in Biomedical Research

- Storing the data and computing power are the first (but relatively small) hurdles.
- Analysis of large-scale, heterogeneous data is much more challenging than individual genomics or proteomics data analysis.
 - It is a different matter to analyze a couple of tens of samples than hundreds or thousands samples.
- There is a need for computational infrastructure.
 - Writing an analysis program fast without proper infrastructure will lead to delays and errors in larger projects.

Anduril

- Anduril is a computational framework to integrate large-scale and heterogeneous data, knowledge in bio-databases and analysis tools.
- The main design principles are:
 - Modular pipeline analysis approach
 - Scalable
 - Open source, thorough documentation
 - http://csbi.ltdk.helsinki.fi/anduril
- Method written in any programming language executable from the command prompt can be included.
- Produces <u>automatically</u> the result PDF and website containing the results.

Genome Medicine

RESEARCH

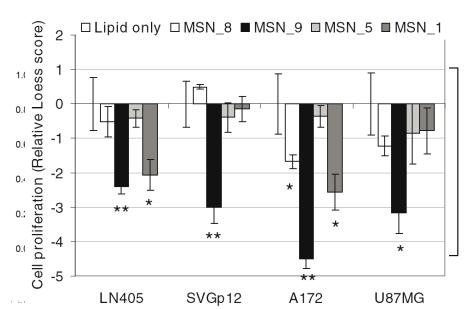
Open Acces

Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme

Kristian Ovaska¹, Marko Laakso¹¹, Saija Haapa-Paananen²¹, Riku Louhimo¹, Ping Chen¹, Viljami Aittomäki¹, Erikka Valo¹, Javier Núñez-Fontamau¹, Ville Bantanen¹, Siriku Karinen¹, Kari Nousiainen¹, Anna-Maria Lahesmaa-Korpinen¹, Minna Miettinen¹, Lilli Saarinen¹, Pekka Kohonen², Jianmin Wu¹, Julka Westermarck^{1,4}, Sampsa Hautaniemi¹

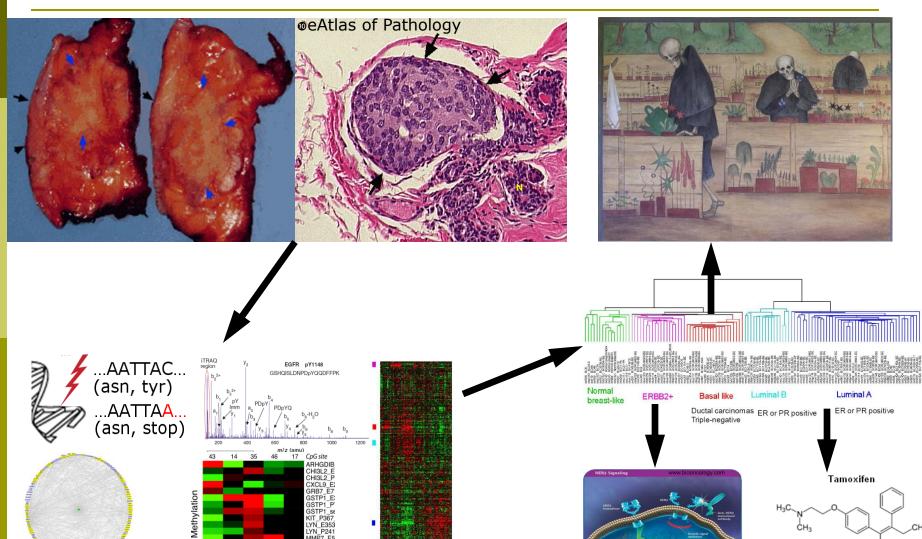
Glioblastoma Multiforme

- Glioblastoma multiforme (GBM) is one of the deadliest cancers.
- The Cancer Genome Atlas (TCGA) has published data from >500 GBM patients:
 - comparative genomic hybridization arrays
 - single nucleotide polymorphism arrays
 - exon and gene expression arrays
 - microRNA arrays
 - methylation arrays
 - clinical data
- Which genes or genetic regions have survival effect?

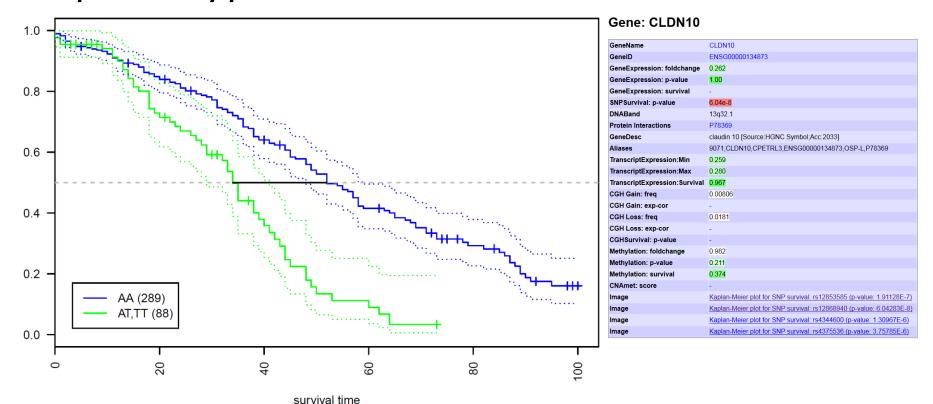

Kristan Oraska', Marko Laikoo'', Saja Haapa-Paarunen'', Riku Loukimo', Ping Chen', Wijami Attomski', Erika Walo, Javier Noher-Fortamua', Wile Bratanen', Sirkku Karinen', Kasi Rousiainen', Anna-Maria Lahesmaa Korpinen', Minna Mettinen', Lilli Saainen', Pelika Kohonen', Jiannin Wu', Julka Westemmach'', Sampoa Hautarierin''

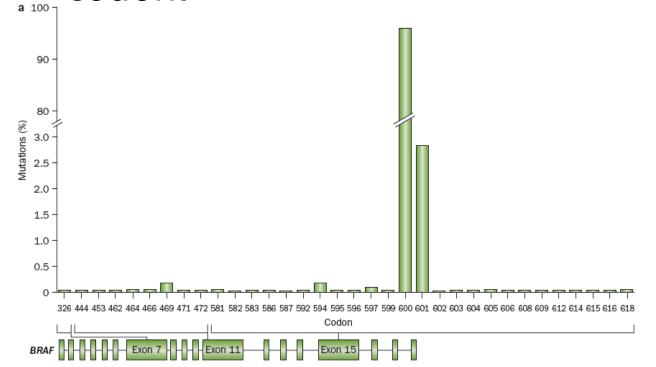
GBM Results in Anduril Website

							1				1	
		MedianExon	Expression	ion TranscriptExpression			CGH					
<u>GeneName</u>	GeneExpression	FoldChange	Survival	<u>Min</u>	Max	Survival	SNPSurvival	Gain	Loss	ExpressionIntegration	Methylation	DNABand
<u>ANKRD26</u>	0.639	0.609	-	0.382	0.992	1.45e-6	-	0.0104	0.292	0.0810	-	10p12.1
<u>FAM171A1</u>	0.235	0.437	0.000342	0.280	0.517	1.66e-6	-	0.0104	0.276	0.0120	-	10p13
<u>ADAM22</u>	0.753	0.454	0.000145	0.154	2.32	4.56e-6	-	0.0833	0.00521	-	-	7q21.12
<u>ZNF236</u>	0.814	0.723	-	0.298	0.766	1.23e-5	-	0.00521	0.0104	-	-	18q23
<u>SCRIB</u>	1.41	1.21	-	0.377	3.09	1.85e-5	-	0.0104	0.0156	0.00600	-	8q24.3
NDRG3	0.305	0.486	0.000142	0.119	0.388	2.66e-5	-	0.00521	-	-	-	20q11.23
MSN)	5.25	3.55	0.000160	3.42	3.66	2.77e-5	-	-	-	-	-	Xq12
ZRANB1	-	0.449	0.00314	0.361	0.420	3.24e-5	-	-	0.333	0.263	-	10q26.13
NMT2	0.686	0.568	-	0.213	1.10	3.26e-5	-	0.0104	0.276	0.148	0.240	10p13
<u>WAC</u>	0.484	0.553	-	0.252	3.54	3.42e-5	-	0.0104	0.292	0.00	-	10p12.1
TCEAL2	0.156	0.224	0.000112	0.215	0.286	4.94e-5	-	-	-	-	-	Xq22.1
HS3ST3B1	1.09	2.18	0.0228	2.41	3.16	5.04e-5	-	-	0.0156	-	-	17p12


Gene: MSN

GeneName	MSN
GenelD	ENSG00000147065
GeneExpression	5.25
ExprPValue	
MedianExonExpression:FoldChange	3.55
MedianExonExpression:PValue	2.43e-10
TranscriptExpression:Min	3.42
TranscriptExpression:Max	3.66
TranscriptExpression:Survival	2.77e-5
SNPSurvival	-
CGH:Gain	-
CGH:Loss	
CGH:ExpressionIntegration	-
Sequenced	yes
Methylation	-
DNABand	Xq12
Protein Interactions	P26038
GeneDesc	moesin [Source:HGNC Symbol;Acc:7373]
Aliases	4478,ENSG00000147065,MSN,P26038
MedianExonExpression:Survival	0.000160
KEGG pathway	Leukocyte transendothelial migration Regulation of actin cytoskeleton
Image <	Kaplan-Meier plot for gene survival: ENSG00000147065 (p-value: 1.59561703975686E-4)


Personalized Treatment


Genetics Play a Key Role in Complex Diseases

Even a small variation in DNA may have severe effects to protein function, cell phenotypes and survival.

The Location of Mutations Matters

- Mutations are not equally distributed along a gene.
- Below BRAF-gene's somatic mutations per codon.

Targeted therapies: how personal should we go?

Miriam Martini Laradana Vasahiana Calvatara Ciana Cahina Tainar and Albarta Bardalli

NATURE REVIEWS CLINICAL ONCOLOGY

VOLUME 9 | FEBRUARY 2012

Use of BRAF Inhibitor In Melanoma

Vemurafenib and BRAF mutations

Approximately 40–60% of cutaneous melanomas carry mutations in the *BRAF* gene and the corresponding protein displays increased kinase activity that results in constitutive activation of downstream signaling pathways. BRAF mutations are mainly located in the kinase domain, with a single substitution of glutamic acid for valine at codon 600 (V600E) accounting for 80% of all mutations; other, less frequent, activating muta-

causing it to be constitutively active.⁶² Vemurafenib was developed to inhibit the mutated B-Raf protein,⁶³ and has shown marked antitumor effects on melanoma cell lines carrying the *BRAF* V600E allele but not in cells with wild-type *BRAF*.⁶⁴⁻⁶⁶ In a phase III randomized clinical trial (BRIM-3), single-agent vemurafenib produced improved rates of overall and progression-free survival in patients with metastatic melanoma, as compared with dacarbazine, the standard treatment comparator.⁶⁷ More

The BRAF V600E allele is present not only in melanomas but also in other tumor types, including CRC tumors where they are found in approximately 5–10% of cases. It is noteworthy that the presence of the V600E BRAF mutation in CRC is apparently not predictive of response to B-Raf inhibitors. For example, most patients with metastatic CRC carrying the BRAF V600E allele do not respond to vemurafenib and those that respond do so to a much lesser extent than has been observed in patients with melanoma. The reasons for this discrepancy are not clear; one possibility is that in CRC the

Targeted therapies: how personal should we go?

Miriam Martini Toredana Vecchione Salvatore Siena Sahine Teinar and Alberto Bardelli

NATURE REVIEWS CLINICAL ONCOLOGY

Genome Medicine: Big Numbers and Promises

- In genomics the number are big.
 - 3x10⁹ nucleotides
 - 20,000-25,000 genes
 - ~100,000 proteins
- These are just the building blocks.
 - Quite a bit to do in categorizing these...
- Real topics still unresolved:
 - Dynamics
 - Context at the pathway level
 - Interactions
 - Impact of cell decisions

Summary

- Characterization of a complex disease first requires identifying the key variables.
- We have tools to measure inner life of cells.
 - Flood of data.
 - Demand for data management and analysis tools.
 - Demand for novel experimental designs and hypotheses.
- Personalized medicine is taking first steps.