
High speed flow simula1on: a
look forward to exascale

Current state of the art and so;ware future-proofing

Neil	Sandham,	Satya	Jammy,	Chris3an	Jacobs,	Markus	Zauner,	David	Lusher	
University	of	Southampton	

	
Funded	by	EPSRC	(grant	EP/K038567/1,	UK	Turbulence	Consor3um	EP/L000261/1)	

and	H2020	“ExaFLOW:	Enabling	Exascale	Fluid	Dynamics	Simula3ons”	
	

UK Turbulence Consor1um

•  Since	1995,	now	46	academics	at	21	UK	ins3tu3ons	
•  Alloca3ons	on	na3onal	HPC	facili3es	
•  Support	of	por3ng,	benchmarking	and	op3misa3on	

• Prolifera3on	of	codes	
•  Since	2018	focus	limited	resources	on	a	small	
number	of	open	source	codes	

•  InCompact3D,	CodeSaturne,	Nektar++	and	OpenSBLI	

Outline
•  Legacy	SBLI	code	

•  Methods	&	sample	applica3on	

•  Future-proofing	simula3on	codes	
•  OPS	approach	(source-to-source	transla3on)	
•  Automa3c	code	genera3on:	OpenSBLI	

•  Performance	and	outlook	towards	Exascale	
•  Store	vs	recompute	on	various	hardware	pladorms	
•  Energy	consump3on	

Brief	overview	of	numerical	approach	
Compressible	Navier-Stokes,	Newtonian	fluid,	mul=-block	curvilinear	grids	

•  Fourth	order	accurate	(central)	space	differencing,	
•  Explicit	in	3me	RK3	or	RK4	
•  Equa3on	condi3oning	(entropy	spligng,	Laplacian	formula3on	

of	viscous	term)	
•  Avoid	filtering	for	direct	numerical	simula3ons	(DNS)	

•  local	oscilla3ons	in	DNS	if	flow	under-resolved	
•  Mixed	3me	scale	sub-grid	model	for	large	eddy	simula3ons	

(LES)	
•  Shock	capturing	(if	selected)	applied	as	full-step	filter		TVD

+ACM+Ducros		
•  Legacy	SBLI	code	(Fortran	95)	

Example: High-fidelity studies on transonic buffet:
Markus Zauner PhD 2019

V2C	wing	profile	

•  Mach	number:	
M=0.7	

•  Reynolds	number:	
Re=500,000	

•  Prandtl	number:	
Pr=0.72	

•  Sutherland	law:	
Csuth=0.41	
	

Basic code: Scaling on HazelHen (PRACE)

Error indicators
Workflow:	
•  Parametrised	structured	grid	

genera3on	
•  Spectral	error	indicator	
•  Itera3ve	2D	grid	adapta3on	
•  Itera3ve	3D	grid	adapta3on	
	

Movie clip here

SWBLI:
towards
exascale

o  Projec3ons	and	issues:	
o  CPU,	GPU	and	poten3al	mixed/novel	architectures	
o  energy	efficiency		
o  fault	tolerance	
o  data	compression	
o  in-situ	graphics	

o  Por3ng	may	require	a	non-trivial	code	rewrite,	requiring	exper3se	in	
fluid	dynamics,	numerical	methods,	and	parallel	compu3ng	paradigms,	
and	their	efficient	implementa3on	

o  										…and	newer	architecture	might	arrive	during	por3ng	

PRACE(HazelHen):		
7	PFlops	peak	

Transonic	airfoil	DNS	at	Re=500,000		
(but	for	wind	tunnel	Re	and	1c	span	we’d	need	
a	similar	share	of	a	~7ExaFlop	machine)	

Inves1ga1on of future-proofing with OPS
(EPSRC project 2014-2016)

§  OPS:	Oxford	Parallel	library	for	Structured-mesh	computa3ons	
o  Key	people:	Gihan	Mudalige,	Istvan	Reguly,	Mike	Giles	
o  Mul3-block	structured	applica3ons	
o  Source-to-source	transla3on	for	parallel	implementa3ons	on	various	

architectures	
o  Very	lirle	overhead	with	the	automa3on	process	for	hydrodynamic	

applica3ons	e.g.	CloverLeaf	

Example	for	simple	stencil	averaging	
ops_par_loop:	

int	range[4]	=	{imin,imax,jmin,jmax};	
ops_par_loop(calc,	block,	2,	range,	
ops_arg_dat(a,S2D_0,”double”,OPS_WRITE),ops_arg_dat(b,S2D_1,”double”,OPS_READ));	

Kernel:	
void	calc(double	*a,	const	double	*b)	{	
	a[OPS_ACC0(0,0)]	=	0.5*(b[OPS_ACC1(1,0)]	+	b[OPS_ACC1(-1,0)];)	
}	

*	Substan3al	coding	required,	
even	for	simple	opera3ons	

Proof of concept: Shu-Osher case

Density profile
compared with WENO
(Pirozzoli) at t=1.8

Valida3on	grid	N=2500	
Le{	state(x<=-4)										|	Right	state(x>-4)	
Density	=	3.857143					|	1+0.2*sin(x)	
Velocity	=	2.629369					|	0	
Pressure	=	10.3333						|	1	

	

Speed	ups	of	up	to	6.57x	on	GPU	(NVIDIA	Tesla	K20c	2946		CUDA	cores		
5GB	memory)	vs	CPU	(Intel®	Xeon®E5-2640	@2.5GHz		12	cores	MPI).		
Also	tested	OpenCL	and	OpenMP	with	no	change	to	code	
	

• Jammy	et	al		
(ParCFD	2015)	

OpenSBLI: ongoing experiment in automa1c code genera1on

● User describes the problem at a higher level.
● Numerical analyst develops the numerical algorithm which generates
● a sequential model code in OPS-compliant C.
● Computer scientist handles parallel backend implementation.

OpenSBLI	

OPS	Library	

Problem	+	
Numerical	

Method	(high	
level)	

Separation of concerns.

•  Python,	with	SymPy	building	blocks	
•  Expand	the	summa3on	indices	of	PDEs	
•  Automa3c	code	genera3on	

•  Apply	spa3al,	temporal	and	boundary	schemes	
•  Create	computa3onal	kernels	
•  Generate	OPSc	code	
•  Output	LaTeX	files	of	kernels	for	debugging	

Example
●  50 line high-level problem definition for the 3D compressible Navier-Stokes equations
●  2000 line generated sequential OPS C code
●  20K lines of generated code for MPI and CUDA

OPSc	Example	of		
auto-generated		
kernel	for	compu3ng		
residual	of		
Compressible	Navier-	
Stokes	solu3on	

Future-proofing with OPS

Model	code	in	
OPS	API	

OpenMP	

CUDA	

OpenCL	

OpenACC	

Translator	

Parses	the	OPS	calls	
Generates	op3mised		
versions	for	various		
architectures	

Source	code	remains	unchanged	

	???	

Newer	architectures	require	backend		
translator	to	be	wriren	

	MPI	

Verifica1on & Valida1on (OpenSBLIv1)
●  3D Taylor-Green vortex
●  N-S Equations
●  Re = 1600
●  CPU(ARCHER), GPU(K40c)

Parallel scaling on CPU

Weak scaling, 643 grid points
per process

Strong scaling, 10243
grid points

o  Flops constrained by RAM (limited size/bandwidth)?

o  Algorithmic changes to exploit the flops by reducing memory usage
and data transfers?

Extrapolation to Exascale?

Cray XC-30 (ARCHER)

Parallel scaling MPI+CUDA

10243 grid points per node

NVIDIA P100, Mellanox EDR Infiniband
(Cambridge CSD3 Wilkes2)

•  Good	weak	scaling	up	to	64	P100	GPUs:	
					3D	Taylor-Green	vortex	case,	meshes	ranging	from	277	million	to	4.3	billion	points.	

Shock-wave boundary-layer interac1on Katzer case

Mach	2
	inlet

Target	architecture	(processes/
threads)

Time	(s) Speed-up

ARCHER	node	CPU	–	Ivy	Bridge		
(24	MPI)

413.1 1.00

Intel	Xeon	Phi	KNL	7210	(64	MPI) 224.7 1.84

1x	GPU	NVIDIA	Tesla	K40 204.6 2.02

1x	GPU	NVIDIA	Tesla	P100 44.0 9.39

Verification & Validation (OpenSBLIv2)

Architecture performance comparison

•  Single	GPU	performance	on	NVIDIA	P100/V100		compared	to	
Intel	Skylake	CPU	node	

•  3D	SBLI	simula3on	with	16	million	points	
•  NVIDIA	V100	is	~5x	faster	than	a	40	core	Skylake	node	

Flexible algorithms

•  Exploit	the	OpenSBLI	framework	to	compare	different	algorithmic	
choices	without	rewri3ng	low-level	code	

q  Baseline	(BL)	–	all	the	deriva3ves	are	stored	in	work	arrays	
q  Recompute	All	(RA)	–	all	con3nuous	deriva3ves	in	the	governing	equa3ons	

are	replaced	by	their	discre3sed	formula	
q  Recompute	Some	(RS)	–	only	the	first	deriva3ves	of	velocity	are	stored	

and	the	rest	recomputed	
q  Store	None	(SN)	–	all	the	deriva3ves	are	evaluated	as	thread/process	local	

variables	
q  Store	Some	(SS)	–	only	the	first	deriva3ves	of	velocity	are	stored	and	the	

rest	are	evaluated	as	thread/process	local	variables	

The	main	limita=on	of	GPUs	is	the	memory	capacity	(16GB	per	P100	vs	196GB	per	CPU	
node):	
Difficult	to	fit	large	enough	problems	on	each	GPU.	
Code-genera3on	gives	greater	flexibility	in	how	the	code	is	wriren	->	recompute	quan33es	
on	the	fly	to	reduce	work	arrays	and	memory	access.	

Implementa1on

•  Taylor-Green	vortex	problem	at	Re=1600	(643 to 2563)

Per RK
substep

Baseline	 Recompute	
All	

Recompute	
Some	

Store	
None	

Store	
Some	

Kernel	calls		 87	 4	 12	 4	 12	

Local	
variables	

0	 0	 0	 63	 53	

Work	
arrays	

67	 5	 14	 5	 14	

Algorithmic performance

CUDA Tesla K40c, runtime (s)
Grid Size
(Millions)

Baseline Recompute
All

Recompute
Some

Store
None

Store
Some

0.2 9 6 6 6 5
2.09 57 35 35 41 33

16.77 495 259 256 302 246

ARCHER node (24 MPI processes), runtime (s)
Grid Size
(Millions)

Baseline Recompute
All

Recompute
Some

Store
None

Store
Some

0.2 16 9 11 8 10
2.09 183 98 97 91 89

16.77 1562 765 803 694 685

Power consump1on
and energy efficiency

Jacobs	et	al	
ParCFD,	2017	
ECCOMAS	2018	

Lines	with	
symbols=power	
consumed	

Bars	=	
energy	
consumed	

Advantages and limita1ons of the
automated code-genera1on approach

ü  New	DSLs	can	be	readily	integrated	
ü  Flexibility	of	algorithms,	methods	and	equa3ons	

ü  Run	3me	and	energy	efficiency		

ü  External	libraries	(e.g.	FFT)	and	implicit	solvers	need	to	be	
implemented	in	both	OpenSBLI	and	OPS	

v  Debugging	for	errors	at	different	levels	may	be	more	difficult		
(par3ally	mi3gated	by	LaTeX	debugging)	

o  Outlook:	
o  Separa3on	of	concerns	should	enable	berer	so{ware	maintainability	
o  Some	flexibility	to	match	algorithms	to	architectures,	looking	towards	exascale	
o  Open	source	under	GNU	GPL:	hrps://opensbli.github.io	

