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Overview

I The changing nature of health data science

I The resulting challenges for the information sciences

◦ statistics

◦ machine learning

◦ inductive logic

I Using Approximate Models and Computational decision theory at
scale

- formal methods for robust, scalable, decision analysis

I Concluding remarks



AI and Health

I The UK is making significant investment into “AI”, in part following
a belief that AI is set to transform medicine

◦ By “AI” we take to mean computational statistics and machine
learning,

I Alan Turing Institute – the UK’s national institute for data science
and AI

I 13 University Partners

I 320+ Turing Fellows & Research Fellows

I 45+ PhD students (plus 20+ on a short-term enrichment placement)

I 30 Interns (12 week programme)

I 20+ Research Software Engineers/Data Scientists

Why the interest in AI?



Changing world

◦ Data generation and data acquisition is no longer the bottleneck

◦ Driven by advances in digital measurement technologies

I Genomes; medical images; electronic health records; wearables;
social media

◦ And resources to capture data in BioBanks and longitudinal cohorts

I UK Biobank on 500,000 individuals:

◦ 100,000 brain images,
◦ 100,000 MRI body scans,
◦ 100,000 “fitbit” data,
◦ all individuals genotyped on 3M marker array, ....

◦ Coupled to increasing raw computing power (GPUs) that facilitate
compute hungry algorithms

◦ High level (governmental) recognition of data as a resource

◦ And connectivity across data environments



Impact on Statistics and Information Sciences

◦ The new era is having a major disruptive effect on Statistics and
machine learning

◦ Driven by the desire to combine information from multiple
data-modalities at population scales

◦ Increasingly fanciful to think that we have anything close to a “true
model”

◦ We need principled approaches to learning from data, that are robust
to modelling assumptions

◦ We need methods that can scale and make use of modern compute
environments

◦ We need to be aware of the consequences of complex studies on
reproducibility of research



Reproducible Research

◦ Reproducible research is fundamental to the scientific method

◦ The onus should be on me to provide you with the tools to refute my
research findings

◦ Popper uses falsification as a criterion of demarcation to draw a
sharp line between those theories that are scientific and those that
are unscientific – Wikipedia

◦ Yet the increasing complexity of modern (e)science is challenging in
this regard

◦ As a community we need to commit to, and work hard, to ensure our
work is reproducible

◦ This requires a cultural shift from us and planning from day one!

◦ There are tools to assist: GitHub; Code capsules; Notebooks



Preamble

◦ Statistics is the scientific study of uncertainty

I uncertainty is quantified in units of probability

◦ Statistics is about being precise about imprecision

I Bayesian statistics is perhaps more explicit on this matter than
other approaches



Foundations of Bayesian inference

◦ I will present some of our recent work in Bayesian methods that seek
to address issues such as robustness to model misspecification and
scalability of computational inference (stochastic simulation)

◦ Bayesian statistics is founded in decision theory and optimal decision
making under uncertainty, principally following Savage (1954)

◦ At the heart of Bayesian inference is the updating rule on parameters
of a statistical (probabilistic) model

Posterior ∝ Prior × Likelihood

p(θ | x1:n) ∝ p(θ) × fθ(x1:n)



However.....
◦ Bayesian inference is predicated on the model being true

Nature = f0(x) = fθ(x) ∃ θ ∈ Θ

I you have to assume that
Nature’s true data generating
mechanism, f0(x), is
contained under the support
of the prior

I and....

All of Bayesian statistics is
model based

◦ But increasing f0(x) is hard to justify or define....how can I define a
true generative model over {genomes, medical images, eHRs, . . . }?

◦ Of course, models are just simply......models.....and it’s fanciful to
think otherwise, but formally all Bayesian statements of uncertainty are
predicated on the model being true



Bayesian Analysis

◦ Increasingly reliant on approximate methods such as Variational Bayes

◦ Should we worry about p(θ|x)?

◦ But if we do just carry on,

I what does the posterior p(θ|x) actually represent?

I should I simply plug p(θ|x) into decision analysis?



Question: What are we learning about?

◦ If the model is false then what does the parameter and posterior
formally represent?

p(θ|x) ∝ fθ(x) p(θ)

◦ As more and more data arrives, for most regular {models, priors} the
posterior will concentrate around a point, θ0,

p(θ|x) −−−−→
n→∞

δθ0

that maximises the expected log-likelihood function (you can think of
the negative log-likelihood as a loss function or error function)

θ0 = arg max
θ

∫
log fθ(x)dF0(x)

for data arising from x ∼ F0(x)



What are we learning about?

◦ You can think of this as the optimal value under an infinite sample size

xi ∼ F0(x)

θ0 = arg max
θ

∞∑
i=1

log fθ(xi)

◦ θ0 is the value that minimizes the Kullback-Leibler divergence from the
model to Nature’s true unknown sampling distribution, F0(x),
irrespective of whether the model is misspecified or not

◦ θ0 is the target of inference and the prior p(θ) should be seen as
specifying beliefs in this context

I so the prior is no longer on the “true value” but rather on the
point where the posterior will concentrate as you obtain more data



Updating with incorrect models.....a fairy tale...

Consider the following (imaginary) thought experiment....

◦ Imagine that you’ve chosen a parametric (generative) probabilistic
model, fθ(x), specified a prior π(θ), and obtained a data set {xi}ni=1

◦ You’re just about to update your model

◦ That is, you are just about to call an algorithm in Stan or WinBUGS
(or Variational Bayes) to calculate the posterior

p(θ|x) ∝
∏
i

fθ(xi) p(θ)

◦ When someone offers you an exact emulator (computer model) of
Nature!

◦ How would you proceed?



A thought experiment

◦ With an exact emulator of Nature, F0(x), you can simply request an
infinite sample size, x̃ = {x̃}1:∞ for

x̃i ∼ F0(x)

and then update to obtain

p(θ|{x̃}1:∞) =

∞∏
i=1

fθ(x̃i)π(θ)

and with an infinite sample size, and prior of sufficient support, all
uncertainty is removed,

p(θ|{x̃}1:∞) → δθ0

θ0 = arg max
θ

∑
i

log fθ(x̃i)

x̃i ∼ F0(x)

◦ Of course, this assumes that you know F0!



Bayesian Nonparametric Learning

◦ In the above story, posterior uncertainty in the optimal value θ0 can be
seen to flow directly from uncertainty in F0

I as knowing F0(x) identifies the target θ0

I And θ0 is the value that minimizes the KL divergence from the
model to Nature’s F0(x), irrespective of whether the model is
true

◦ F0 is unknown, but being “Bayesian” we can place a prior directly on
it, p(F ), for F ∈ F , that should reflect our honest uncertainty

I So place a prior directly on the space of distribution functions F
rather than θ and learn about θ0 that way

I This is the essence of Bayesian Nonparametric Learning – using a
Bayesian NP model, p(F |x), to train a parametric model fθ(x)



Bayesian Nonparametric Learning

◦ So if we can simulate a nonparametric distribution F ∼ p(F |x), we
can then use this to train our model

◦ We will use Bayesian nonparametrics to learn about p(F |x), from
which we then learn θ

◦ Given a sample, F (i) ∼ p(F |x), then for each F (i) there is no
uncertainty in the corresponding optimal parameter values of the
model (that minimizes KL to F (i))

θ(i) = arg max
θ

∫
log fθ(x)dF (i)(x)

◦ Repeating the operation provides a bag of Monte Carlo samples,
{θ(1), . . . , θ(T )}, then characterises the marginal posterior distribution
p̃(θ|x)



Computational Algorithm: using nonparametric models to
train parametric models

The above leads to the following sampling algorithm for θ:

Assuming F (x) has finite support on the data {x̃}j on X then

1. Draw F ∼ p(F |x1:n)

2. Set θ(F ) = arg maxθ∈Θ

∑
i wi log fθ(x̃i)

Repeat

where wi = f (NP )(x̃i), and
∑
i wi = 1

◦ If the draws of F can be made independently, then samples of θ’s
can be drawn in parallel using the NP re-weighted objective
functions

◦ If we use a Dirichlet Process DP to model F then the weights w are
simply uniform on the simplex

◦ We replace traditional MCMC with optimization of randomized
objective functions



The Bayesian posterior bootstrap

◦ The case F (i) ∼ DP (F |x, c = 0, G) is known as the Bayesian
bootstrap

◦ And the fitting of the resulting θ(i) via

θ(i) = arg max
θ

∑
j

wj log fθ(xj)

with w(i) ∼ Uniform(n) (Newton & Rafetry, 1984)

◦ This is simply a randomly re-weighted data maximisation at each step

◦ That is, fit the model to a weighted representation of the data

◦ Where the weights are stochastic

◦ This captures the uncertainty in the model fit arising from the finite
sample – in a precise manner



Comparison to Efron’s Bootstrap
Given dataset x1:n = (x1, . . . , xn)

Let F̂n denote the empirical distribution function:

F̂n(·) =

n∑
i=1

δxi
(·)

which has atomic support at the data

And utility function u(θ, x), e.g. u(θ, x) = log fθ(x)

Efron’s Bootstrap Bayesian Bootstrap

For i = 1, . . . , B: For i = 1, . . . , B:

• x
(i)
1:n ∼ F̂n

• θ
(i)
Boot = arg max

θ∈Θ

n∑
i=1

log fθ(x
(i)
i )

• F (i) ∼ DP(F ; F̂n, c = 0)

• w(i) ∼ Dir(1, 1, 1..., 1)

• θ
(i)
Bayes = arg max

θ∈Θ

n∑
j=1

w
(i)
j log fθ(x

(i)
i )

So on the rhs we draw Fx from the posterior Fx ∼ p(F |x), and then
θ ∼ p(θ|Fx), the latter is simply a point estimate as, given Fx, there is
no uncertainty on θ



Posterior bootstrap asymptotics

Theorem (Lyddon, Holmes & Walker (2018))
Let θ̃ be a NPL sample given a loss function `, such as ` = − log f·(x),
and n observations x1:n. Then under regularity conditions, for any Borel
set A ⊂ Rd, as n→∞ we have

PLL

{
n1/2

(
θ̃n − θ̂n

)
∈ A | x1:n

}
→ P (z ∈ A)

a.s. x1:∞, where z ∼ Nd{0, J−1IJ−1} with

V =

∫
∇`(θ, x)∇`(θ, x)T dF0(x) and J =

∫
∇2`(θ, x)dF0(x)

where ∇ is the gradient operator with respect to θ, and

θ̂n = arg min
θ

n−1
n∑
i=1

`(θ, xi)

.



Asymptotics - interpretation

◦ Misspecified Bayes posterior has scaled covariance matrix
ΣBayes = J−1

◦ Misspecified MLE has scaled covariance matrix ΣMLE = J−1V J−1

I same as the NPL posterior

I when the model is true V = J

◦ J−1V J−1 is referred to as the sandwich covariance matrix in the
robust statistics literature, for example Royall & Tsou (2003)

◦ Müller (2013) showed that, under regularity, the sandwich covariance
matrix leads to decisions with lower frequentist risk than misspecified
Bayes



NP-Learning is predictively superior to Bayes

◦ A natural metric for assessing a posterior distribution is the predictive
risk, defined as the expected Kullback-Leibler divergence of the
posterior predictive to F0

◦ We say predictive p1 asymptotically dominates p2 if for all
distributions q there exists a non-negative and possibly positive
real-valued functional K(q) such that for x1:n ∼ q we have:

EqdKL(q(·), p2(· | x1:n))− EqdKL(q(·), p1(· | x1:n)) = K(q) + o(n−1)

Theorem (Lyddon, Walker & Holmes (2018))
The posterior predictive of NP-learning with c = 0 asymptotically
dominates the standard Bayesian posterior predictive



How to combine with prior information

◦ So far it’s not very Bayesian as there’s no prior

◦ We would like to incorporate prior information into the learning

◦ For example, from a mathematical model of the process, or a
previous study

◦ To do so we make use of synthetic data



Priors through synthetic-data
◦ To do this we rely on the use of synthetic data drawn from a prior

sample predictive

θ′ ∼ p(θ)

x∗1:T ∼iid fθ′(x)

where p(θ) is prior information (or approximate data source)

◦ Then combine the synthetic data with the actual data for the update
with a draw F ∼MDP (F |c, x, x∗) (Antoniak, 1974) where c is
equivalent to an effective sample size in p(θ), with

θ̃(i) = arg max
θ

n n∑
j=1

w
(i)
j log fθ(xj) + c

n+T∑
j=n+1

w
(i)
j log fθ(x

∗
j−n)


with randomized weights w1:n+T , where ( c

c+n ) characterises the
relative influence of the prior data

◦ Prior specification through synthetic data is well known in parametric
(conjucate) models: Beta-Binomial (Laplace) and Linear regression



E.g: Posterior bootstrap samples for VB inference

◦ Variational Bayes cover are an important class of approximate models
designed for computational tractability and scalable inference

◦ While prediction maybe good, it is known that inference on parameters
is not to be trusted due to (artificial) conditional indepedence
structures engineered into the model

I VB builds an approximation by minimizing KL divergence to an
incorrect model. Why not minimize KL to the correct distribution?

◦ We can use NPL to correct for the known model misspecification

I Take a fast, approximate, update for p(θ|x) ∝ fθ(x)p(θ), using a
Variational Bayes model, fθ∗(x)

I Use the VB posterior p(θ∗|x) as a centering model under a
nonparametric prior

I Use a posterior bootstrap to draw samples, θ(j), that combine
information in the data and information in the prior model



Algorithm 1: The Variational Bayes - Posterior Bootstrap

Data: Dataset x1:n = (x1, . . . , xn).
Approximate VB posterior q(θ|x1:n), concentration parameter c,
centering model fθ(x).
Number of centering model samples T .
begin

for i = 1, . . . , B do
Draw VB posterior model parameter θ(i)∗ ∼ q(θ∗|x1:n);

Draw posterior synthetic-data x
(i)
(n+1):(n+T )

iid∼ fθ(i)∗(x);

Generate weights (w
(i)
1 , . . . , w

(i)
n , w

(i)
n+1, . . . , w

(i)
n+T ) ∼

Dirichlet(1, . . . , 1, c/T, . . . , c/T );
Compute parameter update

θ̃(i) =

arg maxθ

{
n∑
j=1

w
(i)
j log fθ(xj) +

T∑
j=1

w
(i)
n+j log fθ(x

(i)
n+j)

}
;

end

Return NP posterior sample {θ̃(i)}Bi=1.
end



VB and EP bivariate Gaussian example from Bishop’s book
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Figure: 95% probability contour for a bivariate Gaussian, comparing VB-NPL
(black dashed) with NP-Learning for decreasing c ∈ {104, 103, 102, 1}

I Correlation structure of posterior, lost in mean field
approximation, is recovered by NP-learning.

I Run-time: 20s for VB-NPL, and 30 mins for MCMC, 1 million
samples



Fast, robust, Bayesian logistic regression

◦ Consider the Bayes logistic regression model

log

(
p(y = 1|x)

p(y = 0|x)

)
= xβ

◦ Two challenges for a conventional Bayesian update:

I It assumes that the model is true – and all interpretation of
posterior intervals are predicated on this

I We have to use (Polya-Gamma) MCMC with a burn-in, thinning,
and convergence diagnostics to draw dependent samples
approximately θ ∼ p(θ|x)

◦ Using NP-learning we can draw iid samples in parallel θ̃ ∼ p̃(θ|x)



Statlog example: german credit data

c = 1 c = 1000 c = 20000
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Figure: Posterior contour plot for β22 vs β21, for NPL (green) and VB (blue),
for three different values of the concentration parameter c. Scatter plot is a
sample from a Bayesian logistic posterior (red) via Polya-Gamma scheme.

I The posterior bootstrap corrects the model to exact coverage

I Run-time 1 million samples: 20 seconds for NPL using AWS, and
30 mins for MCMC, 95 times speed up

I NPL: no burn-in, no thinning, no need for convergence diagnostics



Gaussian Mixture Models

Consider a Bayesian model for K-component diagonal GMM with
non-conjugate prior is:

yi|p,µ,σ ∼
K∑
k=1

πkN
(
µk, diag(σ2

k)
)

π|a0 ∼ Dir(a0, . . . , a0)

µk,d ∼ N (0, 1)

σk,d ∼ logNormal(0, 1)

(1)

For NPL, we are interested in model fitting, so our loss function is simply
the negative log-likelihood:

l(y,p,µ,σ) = − log

K∑
k=1

πkN
(
y;µk, diag(σ2

k)
)

(2)

We use an example in 2-d with K = 3



Gaussian Mixture Model
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Figure: Posterior KDE of (µ1, µ2) in K=3 toy GMM problem

Bayes-NPL captures all of the known symmetries in the multi-modal
posterior model space at a fraction of the run-time

Optimisation of randomised objective functions is much more efficient
than Markov chain Monte Carlo simulation



Conclusions – Bayesian Nonparametric Learning
◦ Modern applications can be disruptive for traditional statistical

methods

◦ NP-Learning is motivated by large scale applications that do not rely
on notions of true models

◦ It’s important to note that Bayes NP-Learning is not an
approximation to the conventional Bayesian posterior, and

p̃NPL(θ|x) 6= p(θ|x)

◦ They are targeting the same parameter, θ0 = arg minθ KL(Fθ||F0),
but they are conditioning on different states of knowledge

I in particular conventional Bayes assumes that the model is true –
and learns at a rate that is defined by this

◦ NPL is scalable and trivially parallel on modern compute architectures

I provides theoretical robustness over conventional Bayes

Thank you!
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